2010
DOI: 10.1093/logcom/exq039
|View full text |Cite
|
Sign up to set email alerts
|

Turing and enumeration jumps in the Ershov hierarchy

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 3 publications
0
3
0
Order By: Relevance
“…(cf., e.g., [2, 14]). Moreover, it was proved in [17] that if AΣα1()β<αnormalΔβ1$$\begin{equation*} A^{\prime }\in \Sigma ^{-1}_{\alpha }\setminus {\left(\bigcup _{\beta &lt;\alpha }\Delta ^{-1}_{\beta }\right)} \end{equation*}$$for a set A and a computable ordinal α>1$\alpha &gt;1$, then α is limit.…”
Section: Turing Jumps In the Ershov Hierarchymentioning
confidence: 99%
See 2 more Smart Citations
“…(cf., e.g., [2, 14]). Moreover, it was proved in [17] that if AΣα1()β<αnormalΔβ1$$\begin{equation*} A^{\prime }\in \Sigma ^{-1}_{\alpha }\setminus {\left(\bigcup _{\beta &lt;\alpha }\Delta ^{-1}_{\beta }\right)} \end{equation*}$$for a set A and a computable ordinal α>1$\alpha &gt;1$, then α is limit.…”
Section: Turing Jumps In the Ershov Hierarchymentioning
confidence: 99%
“…Let S be a system of notation. Recall [17] that a notation aDS$a\in D_S$ is normal if νS(a)>0$\nu _S(a)&gt;0$ and there is a computable function h:{xDS:νSfalse(xfalse)<νSfalse(afalse)}goodbreak×{xDS:νSfalse(xfalse)<νSfalse(afalse)}{xDS:νSfalse(xfalse)<νSfalse(afalse)}$$\begin{equation*} h: \lbrace x\in D_S : \nu _S(x)&lt;\nu _S(a)\rbrace \times \lbrace x\in D_S : \nu _S(x)&lt;\nu _S(a)\rbrace \rightarrow \lbrace x\in D_S : \nu _S(x)&lt;\nu _S(a)\rbrace \end{equation*}$$such that the function νSh$\nu _S\circ h$ is strictly increasing in both arguments. It is easy to see that each natural notation a of ωn$\omega ^n$, n>0$n&gt;0$, is normal via the natural sum α(+)βbadbreak=ωn1(m1+m1)goodbreak+ωn2(m2+m2)goodbreak+goodbreak+ωnk(mk+mk…”
Section: Turing Jumps In the Ershov Hierarchymentioning
confidence: 99%
See 1 more Smart Citation