Our system is currently under heavy load due to increased usage. We're actively working on upgrades to improve performance. Thank you for your patience.
2006
DOI: 10.1021/cr050301x
|View full text |Cite
|
Sign up to set email alerts
|

Tunneling and Dynamics in Enzymatic Hydride Transfer

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

13
329
0
3

Year Published

2007
2007
2017
2017

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 311 publications
(348 citation statements)
references
References 119 publications
13
329
0
3
Order By: Relevance
“…excitonic transport in photosynthetic pigments, coherent spin dynamics in avian magnetoreception, inelastic electron tunneling in olfaction, and hydrogen tunneling in enzyme catalysis [1][2][3][4][5][6][7][8][9][10][11]. This is not only intriguing from a physics perspective -given the noisy high-temperature ambience in these situations -but also promises to reveal robust ways to harness 'quantumness' for engineering new and improved systems, both biomimetic and otherwise.…”
Section: Introductionmentioning
confidence: 99%
“…excitonic transport in photosynthetic pigments, coherent spin dynamics in avian magnetoreception, inelastic electron tunneling in olfaction, and hydrogen tunneling in enzyme catalysis [1][2][3][4][5][6][7][8][9][10][11]. This is not only intriguing from a physics perspective -given the noisy high-temperature ambience in these situations -but also promises to reveal robust ways to harness 'quantumness' for engineering new and improved systems, both biomimetic and otherwise.…”
Section: Introductionmentioning
confidence: 99%
“…Tunneling mechanisms have been shown in a wide array of cofactor-dependent enzymes, including flavoenzymes. Examples of flavoenzymes in which the tunneling mechanisms have been demonstrated include morphinone reductase (29,30), pentaerythritol tetranitrate reductase (29), glucose oxidase (31)(32)(33), and choline oxidase (34). Mechanistic data on Class 2 dihydroorotate dehydrogenases, also with a flavin cofactor (FMN) covalently linked to the protein moiety (35,36), could only propose a mechanism that is either stepwise or concerted with significant quantum mechanical tunneling for the hydride transfer from C6 and the deprotonation at C5 in the oxidation of dihydroorotate to orotate (37).…”
mentioning
confidence: 99%
“…Se a amostragem conformacional é feita corretamente durante as simulações computacionais, estes efeitos, chamados de reorganização da estrutura enzimática 23 , são incorporados normalmente 18,21,24 e não representam um mecanismo catalítico em particular 8,41 . A liberdade conformacional não deve ser confundida com as flutuações dinâmicas da estrutura protéica, principalmente as vibrações que amplificam efeitos quânticos como tunelamento 47,48 . A teoria generalizada do estado de transição 3,49 pode ser usada para racionalizar estes efeitos.…”
Section: Efeitos Quânticos E Dinâmicosunclassified
“…Contribuições de até 3 ordens de magnitude para o aumento da velocidade de reações enzimáticas foram atribuídas à dinâmica da proteína, ou seja, às vibrações que amplificam o tunelamento em comparação com a reação em solução, nos sistemas em que uma transferência de hidrogênio (tanto nas formas H + , H neutro e H -) é determinante da velocidade de reação 8,43,50 . As desidrogenases de álcool 47 e de lactato 48 são exemplos de sistemas em que este mecanismo catalítico é observado.…”
Section: Efeitos Quânticos E Dinâmicosunclassified