Sr 2 IrO 4 was predicted to be a high-temperature superconductor upon electron doping since it highly resembles the cuprates in crystal structure, electronic structure, and magnetic coupling constants. Here, we report a scanning tunneling microscopy/spectroscopy (STM/STS) study of Sr 2 IrO 4 with surface electron doping by depositing potassium (K) atoms. We find that as the electron doping increases, the system gradually evolves from an insulating state to a normal metallic state, via a pseudogaplike phase, and a phase with a sharp, V-shaped low-energy gap with about 95% loss of density of state (DOS) at E F . At certain K coverage (0.5-0.6 monolayer), the magnitude of the low-energy gap is 25-30 meV, and it closes at around 50 K. Our observations show that the electron-doped Sr 2 IrO 4 remarkably resembles hole-doped cuprate superconductors.