2006
DOI: 10.1016/j.electacta.2006.07.038
|View full text |Cite
|
Sign up to set email alerts
|

Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

1
55
0
6

Year Published

2009
2009
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 128 publications
(62 citation statements)
references
References 21 publications
(28 reference statements)
1
55
0
6
Order By: Relevance
“…Values in the range 700-1600 HV were previously reported for polycrystalline MOCVD chromium carbides coatings [41,42] while electrodeposited Cr x C y coatings did not exceed 1300 HV 100 [43,44] and electroplating hard Cr is lower than 1200 HV [45,46]. Only PVD processes manage to reach even higher hardness, from 2000 to 3000 HV [47][48][49].…”
Section: Hardnessmentioning
confidence: 55%
See 1 more Smart Citation
“…Values in the range 700-1600 HV were previously reported for polycrystalline MOCVD chromium carbides coatings [41,42] while electrodeposited Cr x C y coatings did not exceed 1300 HV 100 [43,44] and electroplating hard Cr is lower than 1200 HV [45,46]. Only PVD processes manage to reach even higher hardness, from 2000 to 3000 HV [47][48][49].…”
Section: Hardnessmentioning
confidence: 55%
“…A great advantage of DLI-MOCVD Cr x C y coatings is that they are amorphous, without grain boundaries, while those deposited by other processes are polycrystalline. It is generally reported that crystalline chromium carbides coatings grown by PVD [51], cathodic arc evaporation [51] and electrodeposition [43] are harder than amorphous ones. Interestingly the hardness of our amorphous coatings is already at the level of these polycrystalline Cr x C y coatings.…”
Section: A High Hardnessmentioning
confidence: 99%
“…This can be explained by the fact that the sputtering process is carried out at kinetically-limited conditions, where the impinging atoms are subject to quenching rates above 10 6 K/s, which is well above the rates required when metallic glasses are formed from melts [1]. Amorphous films have many applications, but a major problem is their susceptibility for brittle-crack propagation, which may limit their applicability in mechanically demanding environments [2,3]. This problem can potentially be reduced by the controlled addition of a nanocrystalline component forming a nanocomposite.…”
Section: Introductionmentioning
confidence: 99%
“…В то же время существует альтернативный и существенно более дешевый источник ионов трехвалентного хрома для электролитов такого типа -основной сульфата хрома(III) (техниче ское название -хромовый дубитель) Cr(OH)SO 4 . Хромовый дубитель производится в больших масштабах и широко используется, прежде всего, в кожевенной промышленности [16,17].…”
Section: Introductionunclassified
“…
284
ВВЕДЕНИЕПроблема разработки научных основ новых технологий осаждения покрытий хромом и его сплавами из экологически приемлемых электро литов на основе соединений Cr(III) в последнее годы привлекает все большое внимание исследо вателей [1][2][3][4][5][6][7][8][9][10]. Особенно актуальна задача полу чения толстослойных осадков (с толщиной не сколько десятков и сотен микрометров), которые могут быть использованы в качестве износостой ких покрытий [9,10].
…”
unclassified