“…[ϕ(x, z, 0, r − εη) − ϕ(x, z, y, r)]k(dη) v s (dx, dz, dy, dr)ds. (23) Using ( 22) and ( 23) with a function ϕ depending only on (x, z) (or (y, r)), we see that the first marginal u 1 t (dx, dz) = (y,r)∈J v t (dx, dz, dy, dr) (and the second one u 2 t (dy, dr) = (x,z)∈J v t (dx, dz, dy, dr)) satisfies (20) and (21).…”