Adenovirus (Ad) E1A proteins are transcriptional regulators with antioncogenic but also transforming properties. We have previously shown that transformation-defective Ad5 E1A-derivatives are excellent tumor suppressors. For tumor-specific expression of the E1A-derivatives we intend to use tumor specific human telomerase reverse transcriptase (hTERT) core promoters. Here, we show that Spm2 and other E1A proteins with an intact amino terminus activated all hTERT constructs 10 -20-fold in malignant tumor cells but not in primary fibroblasts, without affecting the activity of endogenous telomerase. The transcription rate in tumor cells was in the range of transcription from the SV40 promoter, which qualifies an E1A-hTERT system as a putative tumor targeting/expression system. The activation of the hTERT promoter by E1A was enhanced upon deletion of the Wilms' tumor 1 negative regulatory element and maintained high after deletion of the adjacent c-Myc-responsive E-box, demonstrating an important role of the remaining sequences that contain several Sp1-motifs. E1A-mediated hTERT activation was independent from the presence of the conserved region 3 (CR3) of E1A but dependent on E1A's binding to p300/CBP and recruitment of its histone acetyltransferase activity. Moreover, E1A-Spm2 and histone deacetylase-1 behaved as antagonists with respect to the regulation of transcription from the hTERT promoter. Overall, hTERT promoter/E1A-Spm2 systems may turn out to be excellent tools for transcriptionally targeted anticancer gene therapy.