2023
DOI: 10.7498/aps.72.20221997
|View full text |Cite
|
Sign up to set email alerts
|

Topological states and quantum effects in magnonics

Abstract: In recent years, with the rapid development of the emerging technologies including the Internet of Things, cloud computing, big data, artificial intelligence and 5G, higher computing power is required. Traditional semiconductor devices are confronting the huge challenges brought by device miniaturization, energy consumption, heat dissipation, and so on. Moore.s law which succeeds in guiding downscaling and upgrading of microelectronics is nearing its end. A new information carrier is urgent need for informatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 305 publications
0
0
0
Order By: Relevance
“…系统不仅对量子力学的基本原理进行了验证, 而且 可以构建各种微型光量子器件、量子信息处理平 台. 近年来, 腔QED 产生了一个新的分支, 即腔磁 力 学 系 统 [29][30][31] , 基 于 磁 子 (yttrium iron garnet, YIG)与微波腔光子的共振耦合形成杂化态-磁光 极化子(magnon-polariton), 其中磁子具有独特的 优势, 例如丰富的磁性非线性、低阻尼率和高自旋 密度 [32] . 通过磁偶极与微波光子相互作用, 耦合强 度可达到超强耦合, 为研究强耦合的物理效应提供 新平台 [33,34] .…”
unclassified
See 1 more Smart Citation
“…系统不仅对量子力学的基本原理进行了验证, 而且 可以构建各种微型光量子器件、量子信息处理平 台. 近年来, 腔QED 产生了一个新的分支, 即腔磁 力 学 系 统 [29][30][31] , 基 于 磁 子 (yttrium iron garnet, YIG)与微波腔光子的共振耦合形成杂化态-磁光 极化子(magnon-polariton), 其中磁子具有独特的 优势, 例如丰富的磁性非线性、低阻尼率和高自旋 密度 [32] . 通过磁偶极与微波光子相互作用, 耦合强 度可达到超强耦合, 为研究强耦合的物理效应提供 新平台 [33,34] .…”
unclassified
“…最近的相关文献又研究了有许多有趣 的现象, 如磁子暗模 [35] 、高阶磁性例外点 [36] 、PT-对称 [37] 、双稳态 [38] 、磁-光-声纠缠 [39] . 因此, 受上述 文献的启发 [29][30][31][32][33][34][35][36][37][38][39][40][41][42][43] 可以改写为…”
unclassified