Highlights d Glycolytic index in melanoma negatively correlates with response to anti-PD1 therapy d Blocking lactate transport or knock out of glycolytic genes improves checkpoint therapy d Diclofenac blocks the lactate transporters MCT1 and MCT4 in a COX-independent manner d Inhibition of glycolysis by MCT blockade does not impede T cell function SUMMARY Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance.Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials.