The etiology of Parkinson's disease (PD) is multifactorial, with genetics, aging, and environmental agents all a part of the PD pathogenesis. Widespread aggregation of the ␣-synuclein protein in the form of Lewy bodies and Lewy neurites, and degeneration of substantia nigra dopamine neurons are the pathological hallmarks of PD. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. Experimental, clinical and epidemiological data suggest that intestinal inflammation contributes to the pathogenesis of PD, and the increasing number of studies suggests that the condition may start in the gastrointestinal system years before any motor symptoms develop. Patients with inflammatory bowel disease (IBD) have a higher risk of developing PD compared with non-IBD individuals. Gene association study has found a genetic link between IBD and PD, and an evidence from animal studies suggests that gut inflammation, similar to that observed in IBD, may induce loss of dopaminergic neurons. Based on preclinical models of PD, it is suggested that the enteric microbiome changes early in PD, and gut infections trigger ␣-synuclein release and aggregation. In this paper, the possible link between IBD and PD is reviewed based on the available literature. Given the potentially critical role of gastrointestinal pathology in PD pathogenesis, there is reason to suspect that IBD or its treatments may impact PD risk. Thus, clinicians should be aware of PD symptoms in IBD patients.