The study objective is to simulate the breakdown of a tank car boiler by safety arc, taking into account the material plasticity. In accordance with this, it is necessary to solve the following tasks: to develop a methodology for calculating the stress-strain state of the boiler under shock load in a nonlinear situation, to select rational geometric characteristics of the armor plate and its thickness. To achieve them, the theory of elasticity and plasticity and the finite element method are used.
The novelty of the work is in the development of a methodology for finding out the stress-strain state of a tank car boiler under shock loading conditions, taking into account the plasticity of the material. The study results are the dependences of the strain energy and stresses on the impact velocity, stress fields, a sample of rational geometrics and thickness of the armor plate.
During the study, a number of calculations were carried out to determine the strength characteristics of the boiler with different configurations of the armor plate. Based on the data obtained, the best options were selected and used to obtain a qualitative picture of the problem being solved.