BACKGROUND:
SARS-CoV-2 infections cause COVID-19 and are associated with inflammation, coagulopathy, and high incidence of thrombosis. Myeloid cells help coordinate the initial immune response in COVID-19. Although we appreciate that myeloid cells lie at the nexus of inflammation and thrombosis, the mechanisms that unite the two in COVID-19 remain largely unknown.
METHODS:
In this study, we used systems biology approaches including proteomics, transcriptomics, and mass cytometry to define the circulating proteome and circulating immune cell phenotypes in subjects with COVID-19.
RESULTS:
In a cohort of subjects with COVID-19 (n=35), circulating markers of inflammation (CCL23 and IL [interleukin]-6) and vascular dysfunction (ACE2 [angiotensin-converting enzyme 2] and TF [tissue factor]) were elevated in subjects with severe compared with mild COVID-19. Additionally, although the total white blood cell counts were similar between COVID-19 groups, CD14+ monocytes from subjects with severe COVID-19 expressed more TF. At baseline, transcriptomics demonstrated increased IL-6, CCL3, ACOD1, C5AR1, C5AR2, and TF in subjects with severe COVID-19 compared with controls. Using stress transcriptomics, we found that circulating immune cells from subjects with severe COVID-19 had evidence of profound immune paralysis with greatly reduced transcriptional activation and release of inflammatory markers in response to TLR (Toll-like receptor) activation. Finally, sera from subjects with severe (but not mild) COVID-19 activated human monocytes and induced TF expression.
CONCLUSIONS:
Taken together, these observations further elucidate the pathological mechanisms that underlie immune dysfunction and coagulation abnormalities in COVID-19, contributing to our growing understanding of SARS-CoV-2 infections that could also be leveraged to develop novel diagnostic and therapeutic strategies.