Time Series AI Model for Acute Kidney Injury Detection Based on a Multicenter Distributed Research Network: Development and Verification Study
Suncheol Heo,
Eun-Ae Kang,
Jae Yong Yu
et al.
Abstract:Background: Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network (DRN)-based time series data are rare.Objective: In this study, we aimed to detect the early occurrence of AKI by applying the interpretable LSTM-based model on a hospital EHR-based time series in patients who took nephrotoxic drugs using a DRN.
Methods:We conduct… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.