A homologous set of 9,9-dialkyl-4,5-diazafluorene compounds were prepared by alkylation of 4,5-diazafluorene with the appropriate alkyl bromide and under basic conditions. The structures of these simple organic compounds were confirmed by spectroscopic techniques (FTIR, NMR, and FABMS). Their biological effects toward a panel of human carcinoma cells, including Hep3B hepatocellular carcinoma, MDAMB-231 breast carcinoma, and SKHep-1 hepatoma cells, were investigated; a structure-activity correlation was established with respect to the length of the alkyl chain and the fluorene ring structure. The relationship between the mean potency [log(1/IC(50))] and alkyl chain length was systematically studied. The results show that compounds with butyl, hexyl, and octyl chains exhibit good growth inhibitory effects toward these three human carcinoma cell lines, and the 9,9-dihexyl-4,5-diazafluorene further exhibits antitumor activity in athymic nude mice Hep3B xenograft models. For the structurally related dialkylfluorenes that lack the diaza functionality, in vitro cytotoxicity was not observed at clinically relevant concentrations.