2015
DOI: 10.1007/978-3-319-09647-6
|View full text |Cite
|
Sign up to set email alerts
|

Thermal Transport in Oblique Finned Micro/Minichannels

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…Moreover, they reported high-pressure drops (2 bars) for reaching minimal thermal resistance due to the small size of channels. Although utilizing a pump could compensate, the generated pressure drop which is used in conventional applications, using these pumps on a micro-scale is almost impossible [6]. The thermal boundary layer in convectional channels is maintained in a fully-developed state; thus, the thermal resistance increases and caused non-uniform heat transfer performance, leading to an unreliable platform and system failure.…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, they reported high-pressure drops (2 bars) for reaching minimal thermal resistance due to the small size of channels. Although utilizing a pump could compensate, the generated pressure drop which is used in conventional applications, using these pumps on a micro-scale is almost impossible [6]. The thermal boundary layer in convectional channels is maintained in a fully-developed state; thus, the thermal resistance increases and caused non-uniform heat transfer performance, leading to an unreliable platform and system failure.…”
Section: Introductionmentioning
confidence: 99%