2001
DOI: 10.1002/app.1827
|View full text |Cite
|
Sign up to set email alerts
|

Thermal analyses of poly(3‐hydroxybutyrate), poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate), and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)

Abstract: Thermal analyses of poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-HV)], and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-HHx)] were made with thermogravimetry and differential scanning calorimetry (DSC). In the thermal degradation of PHB, the onset of weight loss occurred at the temperature (°C) given by T o ϭ 0.75B ϩ 311, where B represents the heating rate (°C/min). The temperature at which the weight-loss rate was at a maximum was T p ϭ 0.91B ϩ 320, and the tempera… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
26
0
2

Year Published

2002
2002
2012
2012

Publication Types

Select...
5
2
1

Relationship

3
5

Authors

Journals

citations
Cited by 54 publications
(34 citation statements)
references
References 22 publications
2
26
0
2
Order By: Relevance
“…Several thermoanalytical procedures have been used to investigate the thermal degradation behavior of PHB, including thermogravimetry (TG) for the analysis of weight loss behavior (Kopinke et al, 1999;Galego & Rozsa, 1999;Li et al, 2001;He et al, 2001;Lee et al, 2001;Aoyagi et al, 2002;Carrasco et al, 2006;Kim et al, 2006;Kawalec et al, 2007;Liu et al, 2009;Ariffin et al, 2008Ariffin et al, , 2010, differential scanning calorimetry (DSC) for monitoring the heat of reaction (Kopinke et al, 1996), fast atom bombardment mass spectrometry (FAB-MS) (Ballistreri et al, 1989), electrospray ionization mass spectrometry (ESI-MS) (Kawalec et al, 2007), pyrolysis-mass spectrometry (Py-MS) (Abate, 1994;Kopinke et al, 1996), pyrolysisgas chromatography (Py-GC) (Lehrle, 1994), pyrolysis-GC/mass spectrometry (Py-GC/MS) (Kopinke et al, 1996(Kopinke et al, , 1997Aoyagi et al, 2002;Ariffin et al, 2008Ariffin et al, , 2010, TG/Fourier transform infrared spectroscopy (TG/FTIR) (Li et al, 2003), NMR (Melchiors et al, 1996;Kopinke et al, 1996;Ariffin et al, 2009), and pyrolysis-GC/FTIR (Li et al, 2003;Gonzalez et al, 2005), for the analysis of volatile products, and size exclusion chromatography (SEC) (Grassie et al, 1984;Kunioka & Doi, 1990;Nguyen et al, 2002;Kim et al, 2006) for the analysis of changes in molecular weight of residual PHB. (Kopinke et al, 1996;Galego & Rozsa, 1999;Li et al, 2001;…”
Section: Analytical Proceduresmentioning
confidence: 99%
“…Several thermoanalytical procedures have been used to investigate the thermal degradation behavior of PHB, including thermogravimetry (TG) for the analysis of weight loss behavior (Kopinke et al, 1999;Galego & Rozsa, 1999;Li et al, 2001;He et al, 2001;Lee et al, 2001;Aoyagi et al, 2002;Carrasco et al, 2006;Kim et al, 2006;Kawalec et al, 2007;Liu et al, 2009;Ariffin et al, 2008Ariffin et al, , 2010, differential scanning calorimetry (DSC) for monitoring the heat of reaction (Kopinke et al, 1996), fast atom bombardment mass spectrometry (FAB-MS) (Ballistreri et al, 1989), electrospray ionization mass spectrometry (ESI-MS) (Kawalec et al, 2007), pyrolysis-mass spectrometry (Py-MS) (Abate, 1994;Kopinke et al, 1996), pyrolysisgas chromatography (Py-GC) (Lehrle, 1994), pyrolysis-GC/mass spectrometry (Py-GC/MS) (Kopinke et al, 1996(Kopinke et al, , 1997Aoyagi et al, 2002;Ariffin et al, 2008Ariffin et al, , 2010, TG/Fourier transform infrared spectroscopy (TG/FTIR) (Li et al, 2003), NMR (Melchiors et al, 1996;Kopinke et al, 1996;Ariffin et al, 2009), and pyrolysis-GC/FTIR (Li et al, 2003;Gonzalez et al, 2005), for the analysis of volatile products, and size exclusion chromatography (SEC) (Grassie et al, 1984;Kunioka & Doi, 1990;Nguyen et al, 2002;Kim et al, 2006) for the analysis of changes in molecular weight of residual PHB. (Kopinke et al, 1996;Galego & Rozsa, 1999;Li et al, 2001;…”
Section: Analytical Proceduresmentioning
confidence: 99%
“…5 However, they also have some disadvantages, including poor thermal stability, [6][7][8][9] narrow processing windows and brittleness [10][11][12] (especially for poly (3-hydroxybutyrate) (PHB)). These disadvantages can be improved by changing processing conditions, 13,14 by changing their chemical structures 15 (e.g., side chain length) and by adding particles, 16 stabilizers, 11 compatibilizers 17 or plasticizers, 18 all of which can influence the solid-state morphologies. Ultimately a molecular level understanding of structure and properties of PHAs will facilitate control over their properties.…”
Section: Introductionmentioning
confidence: 99%
“…6 For example, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-coHHx)] show a wide range of mechanical and physical properties depending on the HV or HHx content. [7][8][9] So far, many blends containing PHB have been studied, including binary blend and ternary blend systems; [1][2][3][4] however, not all of them are totally biodegradable. Chitosan [poly-␤(1-4)-d-glucosamine] is a chiral material suitable for asymmetric separation of racemic mixtures, and for biomedical applications.…”
Section: Introductionmentioning
confidence: 99%