Drilling surface 16-in. and 12.25-in. sections in Middle East often accomplished by complete mud losses where downhole dynamic changed completely. To increase the performance and reduce drilling time the Positive Displace Motors (PDM) are used, however drilling under complete mud losses scenario may lead to a failure of the PDM, Measure While Drilling (MWD) tool, jar and any other components of the Bottom Hole Assembly (BHA). This manuscript describes the study of BHA dynamic in total loss scenario aiming to increase Rate of penetration (ROP) and decrease mechanical failures.
The changing in drilling dynamics under complete mud losses increases the severity of shock and vibrations (S&V), BHA whirl and, consequently, leads to downhole failures. Local practices have been used to control this risk by taking an over conservative approach, limiting Weight on Bit (WOB) and Revolution per Minute (RPM) to very low levels, affecting overall performance. To comprehensively understand the level of shock and vibrations under complete mud losses based on the modeled data, a Downhole Mechanics Measurement (DMM) system was used in the BHA to acquire the required data in real time to confirm and further improve the modeling of drilling dynamics. A drilling schedule with several combinations of WOB and RPM was developed to cover the full drilling envelop.
This study provided valuable understanding on the drilling dynamics while drilling under complete mud losses and allowed to clearly define the limiting boundaries to optimize ROP without jeopardizing the mechanical integrity of the BHA, particularly the PDM and drilling jar. On each formation drilled, RPM, WOB were changed to cover all possible combinations and, using the continuous real time measurement, ROP was optimized based on the level of shocks and vibrations experienced. Furthermore, the recorded mode Low and High-frequency data enabled to model the drilling dynamics and to quantify the effects of shocks and vibrations on the BHA. As a result, the wells have been drilled with significant ROP improvement (saving one day per run) and without downhole failures, achieving higher than expected performance results.