2017
DOI: 10.1016/j.jmaa.2016.07.023
|View full text |Cite
|
Sign up to set email alerts
|

The time viscosity-splitting method for the Boussinesq problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
10
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(10 citation statements)
references
References 33 publications
0
10
0
Order By: Relevance
“…For the nonlinear terms in (), the skew‐symmetric trilinear forms [4, 8] are defined: bold-italicu,bold-italicv,bold-italicwX,θ,ψW$$ \forall \boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in X,\theta, \psi \in W $$: rightN(u;w,v):=left((u·)w,v)=12(u·w,v)12(u·v,w).rightN¯(u;θ,ψ):=left((u·)θ,ψ)=12(u·θ,ψ)12(u·ψ,θ).$$ {\displaystyle \begin{array}{cc}\hfill N\left(\boldsymbol{u};\boldsymbol{w},\boldsymbol{v}\right):= & \kern0.2em \left(\left(\boldsymbol{u}\cdotp \nabla \right)\boldsymbol{w},\boldsymbol{v}\right)=\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \boldsymbol{w},\boldsymbol{v}\right)-\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \boldsymbol{v},\boldsymbol{w}\right).\hfill \\ {}\hfill \overline{N}\left(\boldsymbol{u};\theta, \psi \right):= & \kern0.2em \left(\left(\boldsymbol{u}\cdotp \nabla \right)\theta, \psi \right)=\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \theta, \psi \right)-\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \psi, \theta \right).\hfill \end{array}} $$ The following equalities and inequalities can be obtained from [7, 22, 23]: rightN(u;v,…”
Section: Preliminariesmentioning
confidence: 99%
“…For the nonlinear terms in (), the skew‐symmetric trilinear forms [4, 8] are defined: bold-italicu,bold-italicv,bold-italicwX,θ,ψW$$ \forall \boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in X,\theta, \psi \in W $$: rightN(u;w,v):=left((u·)w,v)=12(u·w,v)12(u·v,w).rightN¯(u;θ,ψ):=left((u·)θ,ψ)=12(u·θ,ψ)12(u·ψ,θ).$$ {\displaystyle \begin{array}{cc}\hfill N\left(\boldsymbol{u};\boldsymbol{w},\boldsymbol{v}\right):= & \kern0.2em \left(\left(\boldsymbol{u}\cdotp \nabla \right)\boldsymbol{w},\boldsymbol{v}\right)=\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \boldsymbol{w},\boldsymbol{v}\right)-\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \boldsymbol{v},\boldsymbol{w}\right).\hfill \\ {}\hfill \overline{N}\left(\boldsymbol{u};\theta, \psi \right):= & \kern0.2em \left(\left(\boldsymbol{u}\cdotp \nabla \right)\theta, \psi \right)=\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \theta, \psi \right)-\frac{1}{2}\left(\boldsymbol{u}\cdotp \nabla \psi, \theta \right).\hfill \end{array}} $$ The following equalities and inequalities can be obtained from [7, 22, 23]: rightN(u;v,…”
Section: Preliminariesmentioning
confidence: 99%
“…Recently, more and more attention has been attracted for the projection methods of the time-dependent natural convection problem, we can refer to [34,35] for more details. However, these methods are mainly some semi-discrete projection methods for the system (1).…”
Section: Introductionmentioning
confidence: 99%
“…Due to the coupling of the velocity, pressure and the temperature among the evolution Boussinesq equations, finding the accurate numerical solution becomes a more difficult task. There were many literatures to study this problem in [4][5][6][7][8][9][10].…”
Section: Introductionmentioning
confidence: 99%
“…are corresponding error norms.Let the domain Ω = [0, 1] × [0, 1], the parameters ν = λ = k = 1.0, T = 1.0 and true solutions in[7] u, p, θ are: u = (u1, u2) = (10x 2 (x − 1) 2 y(y − 1)(2y − 1)cos(t), −10y 2 (y − 1) 2 x(x − 1)(2x − 1)cos(t)), p = 10(2x − 1)(2y − 1)cos(t), θ = 10x 2 (x − 1) 2 y(y − 1)(2y − 1)cos(t) − 10y 2 (y − 1) 2 x(x − 1)(2x − 1)cos(t).…”
mentioning
confidence: 99%