Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (L eq ) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including L eq during different time periods (night, day, weekday, weekend), L dn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO 2 ), fine particulate matter (PM 2.5 ), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week L eq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r9 0.83), while indices of intermittent noise were not well correlated with average noise levels (rG0.41). One-week L eq correlated well with NO, NO 2 , and EC levels (r=0.61 to 0.68) and less so with PM 2.5 levels (r=0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0.58). The high levels of noise observed in NYC often exceed recommended guidelines for outdoor and personal exposures, suggesting unhealthy levels in many locations. Associations between noise, traffic, and combustion air pollutants suggest the possibility for confounding and/or synergism in intraurban epidemiological studies of traffic-related health effects. The different spatial pattern of intermittent noise compared to average noise level may suggest different sources.Kheirbek, Ito, Kim, Johnson, and Matte are with the New York City