Cyclin-dependent kinase 4 (Cdk4) plays a central role in perinatal pancreatic β cell replication, thus becoming a potential target for therapeutics in autoimmune diabetes. Its hyperactive form, Cdk4R24C, causes β cell hyperplasia without promoting hypoglycemia in a nonautoimmune-prone mouse strain. In this study, we explore whether β cell hyperproliferation induced by the Cdk4R24C mutation balances the autoimmune attack against β cells inherent to the NOD genetic background. To this end, we backcrossed the Cdk4R24C knockin mice, which have the Cdk4 gene replaced by the Cdk4R24C mutated form, onto the NOD genetic background. In this study, we show that NOD/Cdk4R24C knockin mice exhibit exacerbated diabetes and insulitis, and that this exacerbated diabetic phenotype is solely due to the hyperactivity of the NOD/Cdk4R24C immune repertoire. Thus, NOD/Cdk4R24C splenocytes confer exacerbated diabetes when adoptively transferred into NOD/SCID recipients, compared with NOD/wild-type (WT) donor splenocytes. Accordingly, NOD/Cdk4R24C splenocytes show increased basal proliferation and higher activation markers expression compared with NOD/WT splenocytes. However, to eliminate the effect of the Cdk4R24C mutation specifically in the lymphocyte compartment, we introduced this mutation into NOD/SCID mice. NOD/SCID/Cdk4R24C knockin mice develop β cell hyperplasia spontaneously. Furthermore, NOD/SCID/Cdk4R24C knockin females that have been adoptively transferred with NOD/WT splenocytes are more resistant to autoimmunity than NOD/SCID WT female. Thus, the Cdk4R24C mutation opens two avenues in the NOD model: when expressed specifically in β cells, it provides a new potential strategy for β cell regeneration in autoimmune diabetes, but its expression in the immune repertoire exacerbates autoimmunity.