2022
DOI: 10.48550/arxiv.2204.08928
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The role of core and strahlo electrons properties on the whistler heat-flux instability thresholds in the solar wind

Abstract: There is wide observational evidence that electron velocity distribution functions (eVDF) observed in the solar wind generally present enhanced tails and field-aligned skewness. These properties may induce the excitation of electromagnetic perturbations through the whistler heatflux instability (WHFI), that may contribute to a non-collisional regulation of the electron heat-flux values observed in the solar wind via wave-particle interactions. Recently, a new way to model the solar wind eVDF has been proposed:… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?