The platform will undergo maintenance on Sep 14 at about 7:45 AM EST and will be unavailable for approximately 2 hours.
2021
DOI: 10.1111/imm.13416
|View full text |Cite
|
Sign up to set email alerts
|

The role of Bruton's tyrosine kinase in the immune system and disease

Abstract: Bruton's tyrosine kinase (BTK) is a TEC kinase with a multifaceted role in B‐cell biology and function, highlighted by its position as a critical component of the B‐cell receptor signalling pathway. Due to its role as a therapeutic target in several haematological malignancies including chronic lymphocytic leukaemia, BTK has been gaining tremendous momentum in recent years. Within the immune system, BTK plays a part in numerous pathways and cells beyond B cells (i.e. T cells, macrophages). Not surprisingly, BT… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
39
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 67 publications
(42 citation statements)
references
References 105 publications
0
39
0
Order By: Relevance
“…BTK is a non-receptor cytoplasmic Tec tyrosine kinase protein that harbors a kinase domain, two SRC homology domains (SH2 and SH3), a N-terminal pleckstrin (PH) domain, and a TEC domain. The BCR stimulation leads to a downstream cascade guided by BTK activation through transphosphorylation at Y551 in the catalytic domain, and autophosphorylation at Y223 in the SH3 domain [ 28 , 29 ]. Upon its activation, BTK starts a phosphorylation positive feedback loop with phospholipase C-γ (PLCγ2), which in turn, regulate downstream mediators such as the MAPK pathway and transcription of nuclear factor of activated T-cells (NFAT) [ 30 ].…”
Section: B-cell Receptor (Bcr) Signalingmentioning
confidence: 99%
“…BTK is a non-receptor cytoplasmic Tec tyrosine kinase protein that harbors a kinase domain, two SRC homology domains (SH2 and SH3), a N-terminal pleckstrin (PH) domain, and a TEC domain. The BCR stimulation leads to a downstream cascade guided by BTK activation through transphosphorylation at Y551 in the catalytic domain, and autophosphorylation at Y223 in the SH3 domain [ 28 , 29 ]. Upon its activation, BTK starts a phosphorylation positive feedback loop with phospholipase C-γ (PLCγ2), which in turn, regulate downstream mediators such as the MAPK pathway and transcription of nuclear factor of activated T-cells (NFAT) [ 30 ].…”
Section: B-cell Receptor (Bcr) Signalingmentioning
confidence: 99%
“…BTK plays an important role in immunity, participating in numerous pathways including B cells, T cells, and macrophages. It is therefore a driving factor in both lymphoproliferative disorders and response to infection [130,131]. BTKis are considered less immunosuppressive and safer than other chemotherapeutic drugs and have been proposed as useful agents for reconstituting humoral immunity and protecting against infection in patients with CLL [132].…”
Section: Infectionsmentioning
confidence: 99%
“…BTK is a nonreceptor cytoplasmic Tec tyrosine kinase protein that harbors a kinase domain, two SRC homology domains (SH2 and SH3), a N-terminal pleckstrin (PH) domain and a TEC domain. The BCR stimulation leads to a downstream cascade guided by BTK activation through transphosphorylation at Y551 in the catalytic domain, and autophosphorylation at Y223 in the SH3 domain [28,29]. Upon its activation, BTK starts a phosphorylation positive feedback loop with phospholipase C-γ (PLCγ2), which in turn, regulate downstream mediators such as the MAPK pathway and transcription of nuclear factor of activated T cells (NFAT) [30].…”
Section: Physiological Roles Of Bcr Signalingmentioning
confidence: 99%