1967
DOI: 10.2140/pjm.1967.21.293
|View full text |Cite
|
Sign up to set email alerts
|

The ptolemaic inequality in Hilbert geometries

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
15
0
1

Year Published

1976
1976
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(16 citation statements)
references
References 3 publications
(8 reference statements)
0
15
0
1
Order By: Relevance
“…In 1963, in his doctoral thesis, Kay showed that a Riemannian manifold is non-positively curved if and only if it is locally Ptolemaic (for more details, see [21]) and that a Finsler space which is locally Ptolemaic is Riemannian. We show that the quadrilateral inequality condition implies the Ptolemaic inequality.…”
Section: IVmentioning
confidence: 99%
“…In 1963, in his doctoral thesis, Kay showed that a Riemannian manifold is non-positively curved if and only if it is locally Ptolemaic (for more details, see [21]) and that a Finsler space which is locally Ptolemaic is Riemannian. We show that the quadrilateral inequality condition implies the Ptolemaic inequality.…”
Section: IVmentioning
confidence: 99%
“…Une part importante des travaux récent concernant ces géométries consiste à étudier les différences et liens qu'elles peuvent partager avec la géo-métrie hyperbolique. Ainsi, si K n'est pas un ellipsoïde, la géométrie n'est pas riemannienne, voir D.C. Kay [19,Corollary 1]. Ce dernier résultat étant dû au fait que parmi les espaces vectoriels de dimension finie, bon nombre de notions de courbures sont satisfaites uniquement par les espaces euclidiens (voir aussi P. Kelly & L. Paige [22], P. Kelly & E. Strauss [20,21]).…”
Section: Introduction Et Présentation Des Résultatsunclassified
“…A metric midpoint of Pl and P2 will be denoted by m [pl, p2] In [10], metric spaces which satisfy inequality (9) locally are said to have feeble non-positive median space curvature. However, unlike (8), the much weaker inequality (9) is valid locally in classical spaces of positive curvature.…”
Section: Comparison Of Metric Inequalitiesmentioning
confidence: 99%
“…For each point p in Z] the spherical neighborhood U(p; r), where r2k ~ (~r]4) 2, satisfies the inequalities(9),(10),(11) with tz = ~r]2 and ~ ~ Tf, Proof We do not attempt here to give the best values of the constants tz and ~. The hyperbolic and Euclidean cases (k ~< 0) are covered by Lemmas 4.1, 4.2 and 4.3 with r = oo.…”
mentioning
confidence: 99%
See 1 more Smart Citation