Host cell-free (axenic) culture of Coxiella burnetii in acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required for C. burnetii growth. Metabolic reconstruction of C. burnetii predicts that the bacterium cannot synthesize all amino acids and therefore must sequester some from the host. To examine C. burnetii amino acid auxotrophies, we developed a nutritionally defined medium with known amino acid concentrations, termed ACCM-D. Compared to ACCM-2, ACCM-D supported longer logarithmic growth, a more gradual transition to stationary phase, and approximately 5-to 10-fold greater overall replication. Small-cell-variant morphological forms generated in ACCM-D also showed increased viability relative to that generated in ACCM-2. Lack of growth in amino acid-deficient formulations of ACCM-D revealed C. burnetii auxotrophy for 11 amino acids, including arginine. Heterologous expression of Legionella pneumophila argGH in C. burnetii permitted growth in ACCM-D missing arginine and supplemented with citrulline, thereby providing a nonantibiotic means of selection of C. burnetii genetic transformants. Consistent with bioinformatic predictions, the elimination of glucose did not impair C. burnetii replication. Together, these results highlight the advantages of a nutritionally defined medium in investigations of C. burnetii metabolism and the development of genetic tools.
IMPORTANCEHost cell-free growth and genetic manipulation of Coxiella burnetii have revolutionized research of this intracellular bacterial pathogen. Nonetheless, undefined components of growth medium have made studies of C. burnetii physiology difficult and have precluded the development of selectable markers for genetic transformation based on nutritional deficiencies. Here, we describe a medium, containing only amino acids as the sole source of carbon and energy, which supports robust growth and improved viability of C. burnetii. Growth studies confirmed that C. burnetii cannot replicate in medium lacking arginine. However, genetic transformation of the bacterium with constructs containing the last two genes in the L. pneumophila arginine biosynthesis pathway (argGH) allowed growth on defined medium missing arginine but supplemented with the arginine precursor citrulline. Our results advance the field by facilitating studies of C. burnetii metabolism and allowing non-antibiotic-based selection of C. burnetii genetic transformants, an important achievement considering that selectable makers based on antibiotic resistance are limited.C oxiella burnetii is a wide-ranging bacterial pathogen that causes the zoonosis Q fever (1, 2). Humans are generally infected by inhalation of contaminated aerosols generated by domestic livestock, with sheep, goats, and dairy cattle being the prim...