Physiology and Biochemistry of Extremophiles 2014
DOI: 10.1128/9781555815813.ch7
|View full text |Cite
|
Sign up to set email alerts
|

The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 29 publications
(4 citation statements)
references
References 56 publications
0
3
0
1
Order By: Relevance
“…Thermophiles are distinguished by their ability to grow at or above temperatures exceeding 50°C [ 36 ], which demand that their macromolecules resist not only the thermal denaturing effects of heat, but also the attendant burden of elevated oxidative stress arising from metabolic processes. Many thermophiles are also halotolerant [ 37 , 38 ], and collectively, these organisms are characterized by the accumulation of amino acids, sugars, polyols, and derivatives thereof (compatible solutes) [ 39 ]. Compatible solute accumulation is conventionally attributed to protecting cells from osmotic stress and heat shock and has been shown to stabilize proteins in vitro [ 38 , 40 ].…”
Section: Introductionmentioning
confidence: 99%
“…Thermophiles are distinguished by their ability to grow at or above temperatures exceeding 50°C [ 36 ], which demand that their macromolecules resist not only the thermal denaturing effects of heat, but also the attendant burden of elevated oxidative stress arising from metabolic processes. Many thermophiles are also halotolerant [ 37 , 38 ], and collectively, these organisms are characterized by the accumulation of amino acids, sugars, polyols, and derivatives thereof (compatible solutes) [ 39 ]. Compatible solute accumulation is conventionally attributed to protecting cells from osmotic stress and heat shock and has been shown to stabilize proteins in vitro [ 38 , 40 ].…”
Section: Introductionmentioning
confidence: 99%
“…成单层膜结构来维持稳定,GDGT 具有更高的机械强度,可以抵抗高温环境 [40] ;或是通 过增加环戊烷结构和甘油骨架的糖基化修饰来维持细胞膜稳定 [41] 。这些适应机制大多是 通过改变膜脂及其组成来增强稳定性。一般来说,高压有助于帮助细胞在高温下保持细胞 膜的完整性、流动性和通透性,与降温作用类似 [42,43] ,压力每增加 10 MPa 相当于温度降 低 13-21 ℃ [44] 。简而言之,高温会增加膜的熵和其无序度,而高压会降低熵,因此高压可 以将膜的流动性保持在相对稳定的范围内。除了高温、高压,膜脂组分也受酸、碱、高盐 以及温度和压力波动等其他极端条件影响 [45][46][47] 。尽管已经观察到热液微生物膜脂组分的变 化,但这些组分变化影响热液微生物环境适应性的生物学机制尚不清晰,需要结合物理学 和分析化学的手段做进一步深入研究。 在热液高温环境和温度波动下,许多生物分子,尤其是生物大分子面临着稳定性被 破坏的威胁,相关研究中最多的是有关高温对生物大分子稳定性的影响。总的来说,高压 有助于稳定 DNA、RNA 和蛋白质的结构,并使其在高温下正常发挥功能 [42,48,49] 。此外, 在多种极端环境适应研究中,分子伴侣和相容性溶质是被广泛报道的极端环境适应策略, 属于应对各种环境压力(包括高温和高压)的"共适应"策略 [29] 。分子伴侣是一类蛋白 质,可与生物大分子结合,帮助维持其结构和功能,包括最常见的热休克蛋白和冷休克蛋 白 [50] ,它们有助于蛋白质从头折叠 [51] ;而相容溶质则是一类增加细胞内水分活度以平衡 细胞内外渗透压的小分子代谢物 [52] ,它们不干扰蛋白质的结构和功能,能减轻高离子浓 度对酶活性的抑制作用,热液环境中的超嗜热古菌可从头合成和积累一些特殊的相容溶质, 例如,二-肌醇-1,3-磷酸 (L,L-di-myo-inositol 1,3-phosphate, DIP) 、甘露糖基甘油酸酯 (mannosylglycerate, MG)和环状 2,3-二磷酸甘油酸 (cyclic 2,3-bisphospho-D-glycerate, cDPG) [53][54][55] ,这些超嗜热菌特异性相容溶质通常在最适和更高温度条件下合成和积累,并 且能稳定大分子的结构,防止热变性 [29,[56][57][58] 。最近一项研究利用中子散射技术证明超嗜热 嗜压古菌中的相容性溶质对整个蛋白质组具有保护作用 [59] 。尽管研究已经鉴定且证明多 、CO 2 和 NO 3 -的还原获得能量 [60] 。化能异养型(超)嗜热菌的代谢途径主要以肽类 和糖类作为底物,它们的能量代谢非常多样化,可利用如 Fe 3+ 、CO 2 、NO 3 -、不同氧化态 的硫化合物、甚至是质子等不同种类的电子受体 [60] ,有些微生物的电子传递链包含不止 一种电子受体,在外部电子受体存在的情况下,底物将被氧化为 CO 2 和/或通过发酵转化 为其他小分子有机物(例如乙酸盐、丙酸盐、醇等) [60] 。(超)嗜热菌在其代谢网络中 有一些特殊的、应对极端高温的方式,但它们仍然面临着化学反应不平衡、有毒代谢物的 积累以及温度扰动引起生化反应失效等挑战,例如电子和能量载体(ATP/ADP, NAD(P)+等)均会在高温下自发降解 [61,62] 。而根据阿伦尼乌斯公式,温度是驱动生化反 应最有影响的参数,高温可使某些中温下难以发生的化学反应变得可行,如甲酸和水转化 为碳酸氢盐和氢的供能反应 [63] 。但与此同时,温度升高也会破坏代谢途径中的各个生化 反应的平衡,这可能导致代谢网络中不同代谢途径受温度影响的程度不同,因此热液高温 下可能发生代谢通路间的开启或关闭,研究者也曾观察到高压胁迫下的这种代谢转变 [30] 。 就目前研究现状而言,无论是高温、高压或其他环境因子,对其导致的代谢影响的研究尚…”
Section: Thermococcus Eurythermalis A501,该菌株的生长范围远超普通微生物和其他极端微生物,unclassified
“…In the biotechnological field, compatible solutes are used as stabilizers of proteins, nucleic acids and other cellular macromolecules and protectants for cosmetics and medicine (Lentzen and Schwarz, 2006 ; Czech et al ., 2018 ). According to their chemical structures, compatible solutes can be classified into several groups: carbohydrates, polyols, phosphodiesters, amino acids and their derivatives (Kets et al ., 1996 ; Elbein, 2003 ; Santos et al ., 2007 ).…”
Section: Introductionmentioning
confidence: 99%