Integrin-mediated cell-matrix adhesion plays an important role in control of cell behavior. We report here that MIG-2, a widely expressed focal adhesion protein, interacts with 1 and 3 integrin cytoplasmic domains. Integrin binding is mediated by a single site within the MIG-2 FERM domain. Functionally, the MIG-2/integrin interaction recruits MIG-2 to focal adhesions. Furthermore, using ␣IIb3 integrin-expressing Chinese hamster ovary cells, a well described model system for integrin activation, we show that MIG-2 promotes integrin activation and enhances cell-extracellular matrix adhesion. Although MIG-2 is expressed in many cell types, it is deficient in certain colon cancer cells. Expression of MIG-2, but not of an integrin binding-defective MIG-2 mutant, in MIG-2-null colon cancer cells strengthened cell-matrix adhesion, promoted focal adhesion formation, and reduced cell motility. These results suggest that the MIG-2/integrin interaction is an important element in the cellular control of integrin-mediated cell-matrix adhesion and that loss of this interaction likely contributes to high motility of colon cancer cells.Cell-extracellular matrix (ECM) 3 adhesion is a fundamental process that is mediated by transmembrane receptors such as integrins (1-6). The interactions of integrins with ECM ligands can be controlled by integrin activation via "inside-out" signaling. Talin, a FERM (Band 4.1 (four point one)/ezrin/radixin/ moesin) domain-containing focal adhesion (FA) protein, can play a key role in this process (for recent reviews, see Refs. 7-10). Binding of the talin FERM domain to the  integrin cytoplasmic domains results in separation of the ␣ and  integrin cytoplasmic tails and consequently in an increase in integrin extracellular ligand-binding affinity (i.e. integrin activation) (11-13). Integrin extracellular ligand-binding affinity plays an important role in control of initial cell-ECM adhesion. Additionally, integrin-mediated cell-ECM adhesion can be enhanced through interactions with cytoskeletal proteins, a process that has been termed cytoskeletal strengthening (14 -16). The physical basis underlying the cytoskeletal strengthening of cell-ECM adhesion has been well described (16). However, the molecular interactions that mediate this process remain to be defined.MIG-2 (mitogen-inducible gene-2, also known as kindlin-2) is a widely expressed and evolutionarily conserved cytoplasmic protein (17-21). Genetic studies have shown that Caenorhabditis elegans UNC-112, a homolog of MIG-2, is required for attachment of body-wall muscle cells to the hypodermis (17,19). Loss of UNC-112 in C. elegans results in an embryonic lethal Pat (paralyzed, arrested elongation at two-fold) phenotype resembling that of ␣ or  integrin loss (17, 19). In mammalian organisms, MIG-2 has been detected in many cell types, including fibroblasts, muscle cells, endothelial cells, and epithelial cells (20,22). In these cells, it concentrates at FAs. MIG-2 interacts with migfilin (20), a filamin-and VASP (vasodilatorstimulated p...