Rising atmospheric carbon dioxide (CO 2 ) conditions are driving unprecedented changes in seawater chemistry, resulting in reduced pH and carbonate ion concentrations in the Earth's oceans. This ocean acidification has negative but variable impacts on individual performance in many marine species. However, little is known about the adaptive capacity of species to respond to an acidified ocean, and, as a result, predictions regarding future ecosystem responses remain incomplete. Here we demonstrate that ocean acidification generates striking patterns of genome-wide selection in purple sea urchins (Strongylocentrotus purpuratus) cultured under different CO 2 levels. We examined genetic change at 19,493 loci in larvae from seven adult populations cultured under realistic future CO 2 levels. Although larval development and morphology showed little response to elevated CO 2 , we found substantial allelic change in 40 functional classes of proteins involving hundreds of loci. Pronounced genetic changes, including excess amino acid replacements, were detected in all populations and occurred in genes for biomineralization, lipid metabolism, and ion homeostasis-gene classes that build skeletons and interact in pH regulation. Such genetic change represents a neglected and important impact of ocean acidification that may influence populations that show few outward signs of response to acidification. Our results demonstrate the capacity for rapid evolution in the face of ocean acidification and show that standing genetic variation could be a reservoir of resilience to climate change in this coastal upwelling ecosystem. However, effective response to strong natural selection demands large population sizes and may be limited in species impacted by other environmental stressors.experimental evolution | population genomics | RNA sequencing | adaptation | environmental mosaic A ccelerating increases in ocean CO 2 concentrations and accompanying declines in pH are expected this century (1, 2), particularly in the California Current System (3). The negative impacts of ocean acidification have been seen in a broad range of species (4-8) and are predicted to lead to future populations of individuals with low growth, reproduction, or survival. However, the capacity of marine populations to adapt to these changes is unknown (9, 10), and, as a result, there may be circumstances in which natural selection could result in populations of individuals with better-than-expected fitness under acidified conditions. Until recently, the tools to scan for standing genetic variation with adaptive potential in the face of climate change have not been broadly available. Here we combine sequencing across the transcriptome of the purple sea urchin Strongylocentrotus purpuratus, growth measurements under experimental acidification, and tests of frequency shifts in 19,493 polymorphisms during development. We detect the widespread occurrence of genetic variation to tolerate ocean acidification.Rapid evolution in changing environments is likely to depend ...