Actuaries often encounter censored and masked survival data when constructing multiple-decrement tables. In this paper, we propose estimators for the cause-specific failure time density using LOESS smoothing techniques that are employed in the presence of left-censored data, while still allowing for right-censored and exact observations, as well as masked causes of failure. The smoothing mechanism is incorporated as part of an expectation-maximisation algorithm. The proposed models are applied to a bivariate African sleeping sickness data set.