This research introduces the Iterative Overlap Optimization Placement (IOOP) method, a novel approach designed to enhance the efficiency of irregular pattern packing by dynamically optimizing overlap ratios and pattern placements. Utilizing a modified genetic algorithm, IOOP addresses the complexities of arranging irregular patterns in a given space, focusing on improving spatial and material efficiency. This study demonstrates the method’s superiority over the traditional Size-First Non-Iterative Overlap Optimization Placement technique through comparative analysis, highlighting significant improvements in spatial utilization, flexibility, and material conservation. The effectiveness of IOOP is further validated by its robustness in handling diverse pattern groups and its adaptability in adjusting pattern placements iteratively. This research not only showcases the potential of IOOP in manufacturing and design processes requiring precise spatial planning but also opens avenues for its application across various industries, underscoring the need for further exploration into advanced technological integrations for tackling complex spatial optimization challenges.