2008
DOI: 10.2140/ant.2008.2.249
|View full text |Cite
|
Sign up to set email alerts
|

The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve

Abstract: Let E be an elliptic curve. Consider an irreducible algebraic curve C embedded in E g . The curve is transverse if it is not contained in any translate of a proper algebraic subgroup of E g . Furthermore C is weak-transverse if it is not contained in any proper algebraic subgroup. Suppose that both E and C are defined over the algebraic numbers.We prove that the algebraic points of a transverse curve C which are close to the union of all algebraic subgroups of E g of codimension 2 translated by points in a sub… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

1
81
0
7

Year Published

2008
2008
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 44 publications
(89 citation statements)
references
References 13 publications
1
81
0
7
Order By: Relevance
“…When the group variety is projectively complete, there are the works of Viada about powers of a fixed elliptic curve (see, e.g. [21]) as well as the works of Rémond generalizing to abelian varieties (see, e.g. [19]).…”
Section: Introductionmentioning
confidence: 99%
“…When the group variety is projectively complete, there are the works of Viada about powers of a fixed elliptic curve (see, e.g. [21]) as well as the works of Rémond generalizing to abelian varieties (see, e.g. [19]).…”
Section: Introductionmentioning
confidence: 99%
“…Let X ⊂ E n be an irreducible 100 P. HABEGGER curve. Intersections of X with H m were studied by Viada [24] and Rémond and Viada [23]. Say X is not contained in the translate of a proper algebraic subgroup of…”
Section: Introductionmentioning
confidence: 99%
“…Théorème 1.13), en suivant une stratégie déve-loppée par Bombieri-Masser-Zannier [7], Viada [34] puis Rémond [25], le résultat optimal r = 2 pour les variétés abéliennes de la forme A = B n où B est une variété abélienne de type C.M. simple.…”
Section: Introductionunclassified
“…Leur méthode (et l'obtention du résultat r = 2) a ensuite été étendue par Viada [34], complété par Rémond-Viada [27], au cas d'une variété abélienne de la forme A = E n avec E une courbe elliptique à multiplication complexe. Rémond [25] a finalement étendu la stratégie (mais pas le résultat optimal) au cas d'une variété abélienne quelconque.…”
Section: Introductionunclassified