This study attempts to investigate the interaction between lower and upper atmosphere, employing daily data of Total Ozone Column (TOC) and atmospheric parameter (cloud cover) over Nigeria from 1998-2012; in order to study the dynamic effect of ozone on climate and vice versa. This is due to the fact that ozone and climate influence each other and the understanding of the dynamic effect of the interconnectivity is still an open research area. Monthly mean daily TOC and cloud cover data were obtained from the Earth Probe Total Ozone Mass Spectroscopy (EPTOMS) and the International Satellite Cloud Climatology Project (ISCCP)-D2 datasets respectively. Bivariate analysis and Mann Kendall trend tests were used in data analysis. MATLAB and ArcGIS software were employed in analyzing the data. Results reveal that TOC increased spatially from the coastal region to the north eastern region of the country. Seasonally, the highest value of TOC was observed at the peak of rainy season when cloud activity is very high, while the lowest value was recorded in dry season. These variations were attributed to rain producing mechanisms and atmospheric phenomena which influence the transport and distribution of ozone. Furthermore, the statistical analysis reveals significant relationship between TOC and low and middle cloud covers in contrast to high cloud cover. This relationship is consistent with previous studies using other atmospheric variables. This study has given scientific insight which is useful in understanding the coupling of the lower and upper atmosphere.