PurposeThe authors derive the necessary mathematics, provide computer simulations, provide links to free and user-friendly computer programs, and analyze real data sets.Design/methodology/approachCohen's d, which indexes the difference in means in standard deviation units, is the most popular effect size measure in the social sciences and economics. Not surprisingly, researchers have developed statistical procedures for estimating sample sizes needed to have a desirable probability of rejecting the null hypothesis given assumed values for Cohen's d, or for estimating sample sizes needed to have a desirable probability of obtaining a confidence interval of a specified width. However, for researchers interested in using the sample Cohen's d to estimate the population value, these are insufficient. Therefore, it would be useful to have a procedure for obtaining sample sizes needed to be confident that the sample. Cohen's d to be obtained is close to the population parameter the researcher wishes to estimate, an expansion of the a priori procedure (APP). The authors derive the necessary mathematics, provide computer simulations and links to free and user-friendly computer programs, and analyze real data sets for illustration of our main results.FindingsIn this paper, the authors answered the following two questions: The precision question: How close do I want my sample Cohen's d to be to the population value? The confidence question: What probability do I want to have of being within the specified distance?Originality/valueTo the best of the authors’ knowledge, this is the first paper for estimating Cohen's effect size, using the APP method. It is convenient for researchers and practitioners to use the online computing packages.