Decades ago, the importance of cytokinins (CKs) during Rhodococcus fascians pathology had been acknowledged, and an isopentenyltransferase gene had been characterized in the fas operon of the linear virulence plasmid, but hitherto, no specific CK(s) could be associated with virulence. We show that the CK receptors AHK3 and AHK4 of Arabidopsis thaliana are essential for symptom development, and that the CK perception machinery is induced upon infection, underlining its central role in the symptomatology. Three classical CKs [isopentenyladenine, trans-zeatin, and cis-zeatin (cZ)] and their 2-methylthio (2MeS)-derivatives were identified by CK profiling of both the pathogenic R. fascians strain D188 and its nonpathogenic derivative D188 -5. However, the much higher CK levels in strain D188 suggest that the linear plasmid is responsible for the virulenceassociated production. All R. fascians CKs were recognized by AHK3 and AHK4, and, although they individually provoked typical CK responses in several bioassays, the mixture of bacterial CKs exhibited clear synergistic effects. The cis-and 2MeS-derivatives were poor substrates of the apoplastic CK oxidase/dehydrogenase enzymes and the latter were not cytotoxic at high concentrations. Consequently, the accumulating 2MeScZ (and cZ) in infected Arabidopsis tissue contribute to the continuous stimulation of tissue proliferation. Based on these results, we postulate that the R. fascians pathology is based on the local and persistent secretion of an array of CKs.phytopathogen ͉ actinomycete ͉ phytohormone T he fine-tuned balance of plant regulators has a key role in the growth and development of plants. Many plant-associated bacteria can influence their hosts by either modulating the phytohormone production or producing the phytohormones themselves. The main advantages for the bacteria are increased nutrient release, suppression of defense, and/or disease establishment (1, 2). Hyperplasia-inducing bacteria, such as Pantoea agglomerans and Pseudomonas savastanoi, secrete high amounts of cytokinins (CKs) and auxins to facilitate or initiate gall development (3, 4), and Agrobacterium tumefaciens genetically transforms plant cells to convert them into CK and auxin (and opine) factories (5).In contrast to the undifferentiated galls induced by the bacteria mentioned above, the Actinomycete Rhodococcus fascians that shares persistence strategies with the closely related human pathogen Mycobacterium tuberculosis (6) provokes the formation of differentiated leafy galls, consisting of numerous shoot primordia whose further outgrowth is inhibited (7). The shooty symptoms can be partially mimicked by exogenous addition of CKs (8, 9), and analyses of culture supernatants of different nonisogenic virulent and avirulent R. fascians strains grown under rich culture conditions identified 11 different CKs: methylaminopurine, 2-methylthioisopentenyladenine (2MeSiP), iP, cis-zeatin (cZ), trans-zeatin (tZ), dihydrozeatin (DZ), 2MeScZ, and their respective ribosides (10-14). Except for iP, the p...