The hypothalamus is a vital part of the central nervous system: it harbors control systems implicated in regulation of a wide range of homeostatic processes, including energy balance and reproduction. Structurally, the hypothalamus is a complex neuroendocrine tissue composed of a multitude of unique neuronal cell types that express a number of neuromodulators, including hormones, classical neurotransmitters, and specific neuropeptides that play a critical role in mediating hypothalamic function. However, neuropeptide and receptor gene expression, second messenger activation, and electrophysiological and secretory properties of these hypothalamic neurons are not yet fully defined, primarily because the heterogeneity and complex neuronal architecture of the neuroendocrine hypothalamus make such studies challenging to perform in vivo. To circumvent this problem, our research group recently generated embryonic- and adult-derived hypothalamic neuronal cell models by utilizing the novel molecular techniques of ciliary neurotrophic factor-induced neurogenesis and SV40 T antigen transfer to primary hypothalamic neuronal cell cultures. Significant research with these cell lines has demonstrated their value as a potential tool for use in molecular genetic analysis of hypothalamic neuronal function. Insights gained from hypothalamic immortalized cells used in conjunction with in vivo models will enhance our understanding of hypothalamic functions such as neurogenesis, neuronal plasticity, glucose sensing, energy homeostasis, circadian rhythms, and reproduction. This review discusses the generation and use of hypothalamic cell models to study mechanisms underlying the function of individual hypothalamic neurons and to gain a more complete understanding of the overall physiology of the hypothalamus.