2016
DOI: 10.1016/j.trmi.2016.05.004
|View full text |Cite
|
Sign up to set email alerts
|

The Hardy–Littlewood–Sobolev theorem for Riesz potential generated by Gegenbauer operator

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 15 publications
0
7
0
1
Order By: Relevance
“…Consider the Gegenbauer‐Riesz potential [18] IGαffalse(chxfalse)=1normalΓ()α2true∫0()true∫0rα210.1emhrfalse(chtfalse)0.1emdrAchtλffalse(chxfalse)0.1emsh2λt0.1emdt,$$ {I}_G&#x0005E;{\alpha }f(chx)&#x0003D;\frac{1}{\Gamma \left(\frac{\alpha }{2}\right)}\int_0&#x0005E;{\infty}\left(\int_0&#x0005E;{\infty }{r}&#x0005E;{\frac{\alpha }{2}-1}\kern0.1em {h}_r(cht)\kern0.1em dr\right){A}_{cht}&#x0005E;{\lambda }f(chx)\kern0.1em s{h}&#x0005E;{2\lambda }t\kern0.1em dt, $$ where hrfalse(chtfalse)=true∫1eνfalse(ν+2λfalse)Pνλfalse(chtfalse)0.1em()ν21λ120.1emdν,3.0235pt3.0235pt0<α<2λ+1,$$ {h}_r(cht)&#x0003D;\int_1&#x0005E;{\infty }{e}&#x0005E;{-\nu \left(\nu &#x0002B;2\lambda \right)}{P}_{\nu}&#x0005E;{\lambda }(cht)\kern0.1em {\left({\nu}&#x0005E;2-1\right)}&#x0005E;{\lambda -\frac{1}{2}}\kern0.1em d\nu, \kern6.05pt 0&lt;\alpha &lt;2\lambda &#x0002B;1, $$ and Pνλfalse(chtfalse)=normalΓfalse(ν+2λfalse)cosπλnormalΓfalse(λfalse)normalΓfalse(λ+1fa...…”
Section: Definitions Notations and Auxiliary Resultsunclassified
See 2 more Smart Citations
“…Consider the Gegenbauer‐Riesz potential [18] IGαffalse(chxfalse)=1normalΓ()α2true∫0()true∫0rα210.1emhrfalse(chtfalse)0.1emdrAchtλffalse(chxfalse)0.1emsh2λt0.1emdt,$$ {I}_G&#x0005E;{\alpha }f(chx)&#x0003D;\frac{1}{\Gamma \left(\frac{\alpha }{2}\right)}\int_0&#x0005E;{\infty}\left(\int_0&#x0005E;{\infty }{r}&#x0005E;{\frac{\alpha }{2}-1}\kern0.1em {h}_r(cht)\kern0.1em dr\right){A}_{cht}&#x0005E;{\lambda }f(chx)\kern0.1em s{h}&#x0005E;{2\lambda }t\kern0.1em dt, $$ where hrfalse(chtfalse)=true∫1eνfalse(ν+2λfalse)Pνλfalse(chtfalse)0.1em()ν21λ120.1emdν,3.0235pt3.0235pt0<α<2λ+1,$$ {h}_r(cht)&#x0003D;\int_1&#x0005E;{\infty }{e}&#x0005E;{-\nu \left(\nu &#x0002B;2\lambda \right)}{P}_{\nu}&#x0005E;{\lambda }(cht)\kern0.1em {\left({\nu}&#x0005E;2-1\right)}&#x0005E;{\lambda -\frac{1}{2}}\kern0.1em d\nu, \kern6.05pt 0&lt;\alpha &lt;2\lambda &#x0002B;1, $$ and Pνλfalse(chtfalse)=normalΓfalse(ν+2λfalse)cosπλnormalΓfalse(λfalse)normalΓfalse(λ+1fa...…”
Section: Definitions Notations and Auxiliary Resultsunclassified
“…In [18, Sec. 4], it was shown that, for α2λ+1$$ \alpha \ge 2\lambda &#x0002B;1 $$ and for fLp,λ()normalℝ+,$$ f\in {L}_{p,\lambda}\left({\mathrm{\mathbb{R}}}_{&#x0002B;}\right), $$ IGα$$ {I}_G&#x0005E;{\alpha } $$ does not exist.…”
Section: Definitions Notations and Auxiliary Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Let Hr=false(0,rfalse)0.1emnormalℝ+$$ {H}_r&amp;#x0003D;\left(0,r\right)\subset {\mathrm{\mathbb{R}}}_{&amp;#x0002B;} $$. Below, we'll need the following relation [16, Lemma 2.3]: ||Hrλ=true∫0rsh2λxdx()shr2γ,$$ {\left&amp;#x0007C;{H}_r\right&amp;#x0007C;}_{\lambda }&amp;#x0003D;\int_0&amp;#x0005E;rs{h}&amp;#x0005E;{2\lambda } xdx\approx {\left( sh\frac{r}{2}\right)}&amp;#x0005E;{\gamma }, $$ where 0<λ<12$$ 0&amp;lt;\lambda &amp;lt;\frac{1}{2} $$ and γ=γλfalse(rfalse)={center centerarray2λ+1,array0<r<2,array4λ,array2r<.$$ \gamma &amp;#x0003D;{\gamma}_{\lambda }(r)&amp;#x0003D;\left\{\begin{array}{cc}2\lambda &amp;#x0002B;1,&amp;amp; 0&amp;lt;r&amp;lt;2,\\ {}4\lambda, &amp;amp; 2\le r&amp;lt;\infty .\end{array}\right. $$ By analogy with (), we introduce the following definition.…”
Section: Definitions Notations and Auxiliary Resultsmentioning
confidence: 99%
“…The Gegenbauer differential operator was introduced in [5]. For the properties of the Gegenbauer differential operator, we refer to [3,4,[10][11][12].…”
Section: Introductionmentioning
confidence: 99%