Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal disease of hematopoietic stem cells (HSCs). Long noncoding RNAs (lncRNAs) perform a wide range of biological functions, including the regulation of gene expression, cell differentiation, and proliferation, but their role in PNH remains unclear.CD59− and CD59+ granulocytes and monocytes from 35 PNH patients were sorted. High-throughput sequencing was analyzed in 5 PNH patients, and differentially expressed lncRNAs and mRNAs were identified. The mRNAs with fragments per kilobase of exon model per million mapped fragments (FPKM) > 10 in at least 3 patients were selected, and experiments were performed to identify their upstream regulatory lncRNAs. The expression of selected mRNAs and lncRNAs was verified by qRT‒PCR, and the correlation of these expression patterns with clinical data from other 30 PNH patients was analyzed. Then, the functions of the lncRNAs were studied in the PIGA-KO-THP-1 cell line.Transcription analysis revealed 742 upregulated and 1376 downregulated lncRNAs and 3276 upregulated and 213 downregulated mRNAs. After deep screening, 8 highly expressed mRNAs that were related to the NF-κB pathway were analyzed to determine coexpression patterns. LINC01002, FAM157C, CTD-2530H12.2, XLOC-064331 and XLOC-106677 were correlated with the 8 mRNAs. After measuring the expression of these molecules in 30 PNH patients by qRT‒PCR, lncRNA FAM157C was verified to be upregulated in the PNH clone, and its expression levels were positively correlated with the LDH levels and CD59− granulated and monocyte cell ratios. After knockdown of the FAM157C gene in the PIGA-KO-THP-1 cell line, we found that the cells were arrested in the G0/G1 phase and S phase, the apoptosis rate increased, and the cell proliferation decreased.LncRNA FAM157C was proven to promote PNH clone proliferation, and this is the first study to explore the role of lncRNAs in PNH.