Monitoring the quality of drinking water is a crucial responsibility for all water infrastructure networks, as it guarantees access to clean water for the communities they serve. With water infrastructure deteriorating due to age and neglect, drinking water violations are on the rise in the US, underscoring the need for improved monitoring capabilities. Among the different sensor technologies, graphene-based chemiresistors have emerged as a promising technology for water quality monitoring due to advantages such as simple design, sensitivity, and selectivity. This review paper provides an overview of recent advances in the development of graphene-based chemiresistors for water quality monitoring, including principles of chemiresistive sensing, sensor design and functionalization, and performance of devices reported in the literature. The paper also discusses challenges and opportunities in the field and highlights future research directions. The development of graphene-based chemiresistors has the potential to revolutionize water quality monitoring by providing highly sensitive and cost-effective sensors that can be integrated into existing infrastructure for real-time monitoring.