2022
DOI: 10.3389/fbioe.2022.893992
|View full text |Cite
|
Sign up to set email alerts
|

The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects

Abstract: Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 209 publications
0
7
0
Order By: Relevance
“…In musculoskeletal tissue engineering, scaffold materials include organic and inorganic sources, such as natural polymers (e.g., fibrin, hyaluronic acid, chitosan, collagen, alginate, and silk fibroin), inorganic materials (e.g., hydroxyapatite, tricalcium phosphate, glass ceramics, and titanium), and synthetic biodegradable polymers [e.g., polycaprolactone, polylactic acid (PLA), polyglycolic acid, and polylactic-co-glycolic acid (PLGA)] [ 58 , 59 ]. Novel synthetic scaffolds can be fabricated from different biomaterials, such as natural and synthetic polymers or inorganic ceramics and polymers, thereby eliminating the disadvantages of conventional scaffolds while enhancing their properties, including mechanical strength, porosity, wettability, angiogenic potential, and cell-material interactions required for tissue regeneration [ 60 , 61 ].…”
Section: Optimization Of Adsc-based Therapeutic Strategiesmentioning
confidence: 99%
See 1 more Smart Citation
“…In musculoskeletal tissue engineering, scaffold materials include organic and inorganic sources, such as natural polymers (e.g., fibrin, hyaluronic acid, chitosan, collagen, alginate, and silk fibroin), inorganic materials (e.g., hydroxyapatite, tricalcium phosphate, glass ceramics, and titanium), and synthetic biodegradable polymers [e.g., polycaprolactone, polylactic acid (PLA), polyglycolic acid, and polylactic-co-glycolic acid (PLGA)] [ 58 , 59 ]. Novel synthetic scaffolds can be fabricated from different biomaterials, such as natural and synthetic polymers or inorganic ceramics and polymers, thereby eliminating the disadvantages of conventional scaffolds while enhancing their properties, including mechanical strength, porosity, wettability, angiogenic potential, and cell-material interactions required for tissue regeneration [ 60 , 61 ].…”
Section: Optimization Of Adsc-based Therapeutic Strategiesmentioning
confidence: 99%
“…The combination of ADSCs with novel biomaterials or matrix proteins is being investigated as potential optimization strategies for cartilage regeneration. Biomaterials and matrix proteins can create a niche microenvironment that enhances the delivery, migration, proliferation, and differentiation of ADSCs [ 59 ]. As natural polymers, hyaluronic acid combined with allogeneic ADSCs efficiently promoted cartilage regeneration and prevented osteoarthritis progression in sheep [ 116 , 117 ].…”
Section: Adscs and Adsc-based Therapies For Musculoskeletal Regenerationmentioning
confidence: 99%
“…Depending on the anatomical region from which the adipose sample is taken, some differences have been reported. For example, a greater number of cells can be isolated from the adipose tissue of the arm, whereas cells with excellent plasticity can be obtained from the groin area [20]. Many studies have been carried out on adipose tissue contained in the lipoaspirate that is available after liposuction and would be otherwise discarded.…”
Section: Adipose-derived Mesenchymal Stromal Cells (Ascs)mentioning
confidence: 99%
“…It is important to underline that ASCs have a low immunological reactivity, thanks to the absence or low expression of immunogenic surface antigens (CD40, CD40L, CD80 and CD86) and major histocompatibility complex II. This low immunological reactivity also makes them suitable for allogeneic use [20]. In addition, ASCs are able to modulate T and B cell activity and exert anti-inflammatory effects [36].…”
Section: Adipose-derived Mesenchymal Stromal Cells (Ascs)mentioning
confidence: 99%
See 1 more Smart Citation