2023
DOI: 10.1063/5.0138011
|View full text |Cite
|
Sign up to set email alerts
|

The effects of pulse voltage rise time on the nanosecond pulsed breakdown of nitrogen spark switch at atmospheric pressure with 3D PIC-MCC model

Abstract: In this paper, the effects of pulse voltage rise time on the nanosecond pulsed breakdown of the nitrogen spark switch at atmospheric pressure are analyzed. Based on the assumption of initial electrons generation due to the field emission, the simulations are performed using a three-dimensional particle-in-cell, Monte Carlo-collision model for the pulse voltage with a rise time of 40, 60, and 100 ns, respectively. The breakdown experiments of the nitrogen spark switch are carried out for three different rise ti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 41 publications
0
2
0
Order By: Relevance
“…Among the main directions of RAEs and X-rays investigations, considering only a small part of the well-known publications over the last few years, are works [71][72][73] aimed at obtaining thermonuclear fusion in which the runaway electrons damaged walls of vacuum chambers, thereby limiting plasma heating; works [74][75][76][77][78][79] considering atmospheric discharges, including high-altitude ones in which X-ray and gamma radiation were registered and reasons for their occurrence were discussed; works [80][81][82][83][84][85] in which megavolt voltage discharges emitting X-rays and modeling lightning evolution in meter gaps were registered; works [86][87][88][89] considering discharges in a uniform electric field at relatively low voltages; and, of course, discharges in a non-uniform electric field registered in centimeter gaps at high voltages in air and other gases for which the runaway electrons were experimentally registered. To confirm the relevance of these studies on electron beam generation, some other works not mentioned above that have been published in 2022-2023 should be mentioned here, including works [90][91][92][93][94][95][96][97][98] in which the study of the RAEB generation in centimeter gaps was continued. In works [99,100], attention was focused on the study of the RAEs in TOKAMAK-type installations and devices for their diagnostics in these conditions.…”
Section: Introductionmentioning
confidence: 92%
“…Among the main directions of RAEs and X-rays investigations, considering only a small part of the well-known publications over the last few years, are works [71][72][73] aimed at obtaining thermonuclear fusion in which the runaway electrons damaged walls of vacuum chambers, thereby limiting plasma heating; works [74][75][76][77][78][79] considering atmospheric discharges, including high-altitude ones in which X-ray and gamma radiation were registered and reasons for their occurrence were discussed; works [80][81][82][83][84][85] in which megavolt voltage discharges emitting X-rays and modeling lightning evolution in meter gaps were registered; works [86][87][88][89] considering discharges in a uniform electric field at relatively low voltages; and, of course, discharges in a non-uniform electric field registered in centimeter gaps at high voltages in air and other gases for which the runaway electrons were experimentally registered. To confirm the relevance of these studies on electron beam generation, some other works not mentioned above that have been published in 2022-2023 should be mentioned here, including works [90][91][92][93][94][95][96][97][98] in which the study of the RAEB generation in centimeter gaps was continued. In works [99,100], attention was focused on the study of the RAEs in TOKAMAK-type installations and devices for their diagnostics in these conditions.…”
Section: Introductionmentioning
confidence: 92%
“…The works [74][75][76][77][78][79] considered atmospheric discharges, including high-altitude ones in which X-ray and gamma radiation were registered and reasons for their occurrence were discussed; works [80][81][82][83][84][85] in which megavolt voltage discharges emitting X-rays and modeling lightning evolution in meter gaps were registered; works [86][87][88][89] considered discharges in a uniform electric field at relatively low voltages; and, of course, discharges in a non-uniform electric field registered in centimeter gaps at high voltages in air and other gases for which the runaway electrons were experimentally registered. To confirm the relevance of these studies on electron beam generation, some other works not mentioned above that have been published in 2022-2023 should be mentioned here, including works [90][91][92][93][94][95][96][97][98] in which the study of RAEB generation in centimeter gaps was continued. In works [99,100], attention was focused on the study of RAEs in TOKAMAK-type installations and devices for their diagnostics in these conditions.…”
Section: Introductionmentioning
confidence: 92%