Abstract. Consistency of observed oceanographic salinity data is discussed with respect to contemporary metrological concepts. The claimed small uncertainty of salinity measurement results traceable to the conductivity ratio of a certified IAPSO Standard Seawater reference is not metrologically justified if results are compared on climatic time scales. This applies in particular to Practical Salinity S P , Reference Salinity S R , and the latest estimates of Absolute Salinity using the TEOS-10 formalism. On climate time scales an additional contribution to the uncertainty that is related to unknown property changes of the reference material must be accounted for. Moreover, when any of these measured or calculated quantity values is used to estimate Absolute Salinity of a seawater sample under investigation, another uncertainty contribution is required to quantify the accuracy of the equations relating the actually measured quantity to the Absolute Salinity. Without accounting for these additional uncertainties, such results cannot be used to estimate Absolute Salinity with respect to the International System of Units (SI), i.e. to the unit chosen for the mass fraction of dissolved material in the sample, which is "g kg −1 ". From a metrological point of view, such deficiencies in the calculations involving other quantities will produce SI-incompatible results. We outline how these problems can be overcome by linking salinity to primary SI measurement standards.