Ports are key factors in international trade, and new port terminals are quite costly and time consuming to build. Therefore, it is necessary to optimize existing infrastructure to achieve sustainability in logistics. This problem is more complex in multi-client port terminals, where quay infrastructure is shared among terminal operators who often have conflicting interests. Moreover, the berth allocation problem in liquid bulk terminals implies demanding restrictions due to the reduced flexibility in berth allocation for these types of goods. In this context, this paper presents HADES, a multi-agent platform, and the experience of its pilot use in the Port of Cartagena. HADES is a software platform where agents involved in vessel arrivals share meaningful but limited information. This is done to alleviate potential congestion in multi-client liquid bulk terminals, promoting a consensus where overall congestion anchoring is reduced. A study is presented using a mixed integer linear program (MILP) optimization model to analyze the maximum theoretical reduction in congestion anchoring, depending on the flexibility of vessel arrival time changes. Results show that 6 h of flexibility is enough to reduce congestion anchoring by half, and 24 h reduces it to negligible values. This confirms the utility of HADES, which is also briefly described.