2000
DOI: 10.2113/gscanmin.38.4.853
|View full text |Cite
|
Sign up to set email alerts
|

THE CRYSTAL CHEMISTRY OF Li-BEARING MINERALS WITH THE MILARITE-TYPE STRUCTURE: THE CRYSTAL STRUCTURE OF END-MEMBER SOGDIANITE

Abstract: The crystal structure of end-member sogdianite from the Dara-i-Pioz alkaline massif, northern Tajikistan, a 10.1240(3), c 14.3198(5) Å, V 1271.1(1) Å 3 , space group P6/mcc, Z = 2, has been refined to an R index of 2.0% using 576 observed (|F o | > 4F) reflections collected with single-crystal diffractometer with MoK␣ X-radiation. Electron-microprobe analysis gives a composition (Zr 1.98 Hf 002 ) ⌺2.00 (K 0.99 Na 0.01 ) ⌺1.00 Li 2.97 Si 12.01 O 30 . The sogdianite end-member has the typical structure of the do… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
16
0

Year Published

2007
2007
2018
2018

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 15 publications
(18 citation statements)
references
References 6 publications
2
16
0
Order By: Relevance
“…The issue of what affects the relative chemical stabilities of specific bond topologies is one that challenges our understanding of structure stability and deserves serious consideration in the future. Pautov and Agakhanov (1997); (5) White et al (1973), Armbruster and Oberhänsli (1988b); (6) Velde et al (1989); (7) Semenov et al (1975), Ferraris et al (1999); (8) Pautov et al (1996), Sokolova and Pautov (1995); (9) Abraham et al Grice et al (1987); (18) Fuchs et al (1966), Hentschel et al (1980), Armbruster (1989); (19) Pautov et al (1998), Sokolova et al (1999); (20) Dusmatov et al (1968), Cooper et al (1999), Sokolova et al (2000); (21) Murakami et al (1976), Kato et al (1976); (22) Postl et al (2004); (23) Bunch and Fuchs (1969). a Omitting (H 2 O) in the channels.…”
Section: Discussionmentioning
confidence: 99%
“…The issue of what affects the relative chemical stabilities of specific bond topologies is one that challenges our understanding of structure stability and deserves serious consideration in the future. Pautov and Agakhanov (1997); (5) White et al (1973), Armbruster and Oberhänsli (1988b); (6) Velde et al (1989); (7) Semenov et al (1975), Ferraris et al (1999); (8) Pautov et al (1996), Sokolova and Pautov (1995); (9) Abraham et al Grice et al (1987); (18) Fuchs et al (1966), Hentschel et al (1980), Armbruster (1989); (19) Pautov et al (1998), Sokolova et al (1999); (20) Dusmatov et al (1968), Cooper et al (1999), Sokolova et al (2000); (21) Murakami et al (1976), Kato et al (1976); (22) Postl et al (2004); (23) Bunch and Fuchs (1969). a Omitting (H 2 O) in the channels.…”
Section: Discussionmentioning
confidence: 99%
“…Here, we report the crystal structure of faizievite as an assemblage of intercalated blocks of the structures of baratovite, K Li 3 Ca 7 Ti 2 (Si 6 O 18 ) 2 F 2 (Sandomirskii et al 1976), and berezanskite, K Li 3 Ti 2 (Si 12 O 30 ) (milarite group) (Pautov & Agakhanov 1997). Both baratovite and berezanskite were first described as accessory minerals in quartz -albite -aegirine pegmatitic veinlets in quartz-aegirine syenites and albitites of the Dara-i-Pioz massif, northern Tajikistan (Dusmatov et al 1975, andPautov &Agakhanov 1997, respectively). The crystal structure of baratovite was solved by Sandomirskii et al (1976) and refined by Menchetti & Sabelli (1979).…”
Section: Chemical Compositionmentioning
confidence: 99%
“…For the diagram of a hypothetical structure of berezanskite, we use atom coordinates of the crystal structure of sogdianite, K [9]  Li 3 Zr 2 (Si 12 O 30 ), as the crystal structure of berezanskite has not been yet refined. Sogdianite is a Zr-analogue of berezanskite, with a 10.1240(3), c 14.3198(5), space group P6/mcc, Z = 2 (Sokolova et al 2000).…”
Section: The Faizievite Structure: An Assemblage Of Intercalated Blocmentioning
confidence: 99%
“…The milarites exhibit large compositional variations at the T2 site with, e.g., Li, Be, B, Mg, Al, Si, Mn, Fe 2þ , Fe 3þ , and Zn, and at the A-site with Al, Fe 3þ , Sn 4þ , Fe 2þ , Mg, Zr, Ca, Na, Y, REE, Sc, and others (Sokolova et al, 2000;Hawthorne, 2002). The associated large variations in cation radii can be accommodated by low-energy distortions of edge-linked (T2)O 4 tetrahedra adjusting to predominantly regular AO 6 octahedra of variable size depending on the type of A-site cation.…”
Section: Introductionmentioning
confidence: 99%
“…Brannockite, ideally KSn 2 Li 3 Si 12 O 30 , was described by White et al (1973) from Li-Sn rich pegmatites of the Foote Mine, Kings Mountain, North Carolina, USA, and its structure refined by Armbruster & Oberhänsli (1988b). Closely related to brannockite, are the corresponding Zr end-member sogdianite KLi 3 Zr 2 [Si 12 O 30 ] (Dusmatov et al, 1968;Boggs, 1984;Cooper et al, 1999;Sokolova et al, 2000) (Armbruster & Oberhänsli, 1988b). Darapiosite K(Na,K,&) 2 (Mn 2þ , Zr 4þ , Y 3þ ) 2 (Li, Zn, Fe 2þ ) 3 [Si 12 O 30 ] (Semenov et al, 1975;Ferraris et al, 1999) in end-member composition with Zn 2 Li in T2-site is charge balancing the divalent A-site with two Na þ on the B-site (Hawthorne, 2002).…”
Section: Introductionmentioning
confidence: 99%