2019
DOI: 10.1101/798587
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The conserved DNMT1 dependent methylation regions in human cells are vulnerable to environmental rotenone

Abstract: Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origindependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 78 publications
(64 reference statements)
0
1
0
Order By: Relevance
“…Last, we tested our hypothesis that genes adjacent to non-germline ASMs would be vulnerable to environmental factors by exposing human embryonic kidney HEK293 cells to the pesticide rotenone for 24 h. We used whole transcriptome RNA-sequencing and targeted bisulfite-amplicon sequencing to evaluate changes in expression of adjacent genes and DNA methylation at candidate ASMs in response to rotenone. Indeed, our data demonstrate the vulnerability of these new non-traditional ASMs to environmental exposure [23].…”
Section: Introductionmentioning
confidence: 63%
“…Last, we tested our hypothesis that genes adjacent to non-germline ASMs would be vulnerable to environmental factors by exposing human embryonic kidney HEK293 cells to the pesticide rotenone for 24 h. We used whole transcriptome RNA-sequencing and targeted bisulfite-amplicon sequencing to evaluate changes in expression of adjacent genes and DNA methylation at candidate ASMs in response to rotenone. Indeed, our data demonstrate the vulnerability of these new non-traditional ASMs to environmental exposure [23].…”
Section: Introductionmentioning
confidence: 63%