2018
DOI: 10.29220/csam.2018.25.5.523
|View full text |Cite
|
Sign up to set email alerts
|

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

Abstract: Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model para… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 23 publications
0
2
0
Order By: Relevance
“…[ 24 ] discussed some Bayesian analyses for the KumW distribution. [ 25 ] considered a regression model for bivariate random variables based on the bivariate KumW distribution. Although the KumW has been perfectly described many datasets, it has been modified by some authors.…”
Section: Introductionmentioning
confidence: 99%
“…[ 24 ] discussed some Bayesian analyses for the KumW distribution. [ 25 ] considered a regression model for bivariate random variables based on the bivariate KumW distribution. Although the KumW has been perfectly described many datasets, it has been modified by some authors.…”
Section: Introductionmentioning
confidence: 99%
“…Abed, et al [1] proposed a new mixture statistical distribution Exponential -Kumaraswamy. Fachini-Gomes, et al [12] presented the Bivariate Kumaraswamy Weibull regression model. Arshad, et al [4] presented the gamma kumarsawmy-G distribution, theory, inference and applications.…”
Section: Introductionmentioning
confidence: 99%
“…A distribuição Kumaraswamy proposta em Kumaraswamy (1980) possui sua função densidade de probabilidade duplamente limitada nos extremos inferiores e superiores, uma característica bastante semelhante em relação à distribuição Beta. Vários modelos de regressão foram introduzidos com base nessa distribuição como De Santana et al (2012) (modelo de sobrevivência com capacidade de modelar função de taxa de falha não monótona) e Fachini-Gomes et al (2018) (apresenta uma abordagem para distribuição bivariada), porém, devido à quantidade limitada de modelos para estudo, essas distribuições não foram selecionadas.…”
Section: Revisão Bibliográficaunclassified