Let [Formula: see text] be the group of [Formula: see text]-torsion points of a commutative algebraic group [Formula: see text] defined over a number field [Formula: see text]. For a prime [Formula: see text] of [Formula: see text], we let [Formula: see text] be the number of [Formula: see text]-solutions of the system of polynomial equations defining [Formula: see text] when reduced modulo [Formula: see text]. Here, [Formula: see text] is the residue field at [Formula: see text]. Let [Formula: see text] denote the number of primes [Formula: see text] of [Formula: see text] such that [Formula: see text]. We then, for algebraic groups of dimension one, compute the [Formula: see text]th moment limit [Formula: see text] by appealing to the Chebotarev density theorem. We further interpret this limit as the number of orbits of the action of the absolute Galois group of [Formula: see text] on [Formula: see text] copies of [Formula: see text] by an application of Burnside’s Lemma. These concrete examples suggest a possible approach for determining the number of orbits of a group acting on [Formula: see text] copies of a set.