The paper presents a new approach to effectively support the adaptation phases in the case-based reasoning (CBR) process. The use of the CBR approach in DSS (Decision Support Systems) can help the doctors better understand existing knowledge and make personalized decisions. CBR simulates human thinking by reusing previous solutions applied to past similar cases to solve new ones. The proposed method improves the most challenging part of the CBR process, the adaptation phase. It provides diagnostic suggestions together with explanations in the form of decision rules so that the physician can more easily decide on a new patient’s diagnosis. We experimentally tested and verified our semi-automatic adaptation method through medical data representing patients with cardiovascular disease. At first, the most appropriate diagnostics is presented to the doctor as the most relevant diagnostic paths, i.e., rules—extracted from a decision tree model. The generated rules are based on existing patient records available for the analysis. Next, the doctor can consider these results in two ways. If the selected diagnostic path entirely covers the actual new case, she can apply the proposed diagnostic path to diagnose the new case. Otherwise, our system automatically suggests the minimal rules’ modification alternatives to cover the new case. The doctor decides if the suggested modifications can be accepted or not.