Sipuleucel-T is the only FDA-approved immunotherapy for metastatic castration-resistant prostate cancer. The mechanism by which this treatment improves survival is not fully understood. We have previously shown that this treatment can induce the recruitment of CD4 and CD8 T cells to the tumor microenvironment. In this study, we examined the functional state of these T cells through gene expression profiling. We found that the magnitude of T cell signatures correlated with the frequency of T cells as measured by immunohistochemistry. Sipuleucel-T treatment was associated with increased expression of Th1-associated genes, but not Th2-, Th17 – or Treg-associated genes. Post-treatment tumor tissues with high CD8+T cell infiltration was associated with high levels of CXCL10 expression. On in situ hybridization, CXCL10+ cells colocalized with CD8+T cells in post-treatment prostatectomy tumor tissue. Neoadjuvant sipuleucel-T was also associated with upregulation of immune inhibitory checkpoints, including CTLA4 and TIGIT, and downregulation of the immune activation marker, dipeptidylpeptidase, DPP4. Treatment-associated declines in serum PSA were correlated with induction of Th1 response. In contrast, rises in serum PSA while on treatment were associated with the induction of multiple immune checkpoints, including CTLA4, CEACAM6 and TIGIT. This could represent adaptive immune resistance mechanisms induced by treatment. Taken together, neoadjuvant sipuleucel-T can induce both a Th1 response and negative immune regulation in the prostate cancer microenvironment.