The selection of chromosomal targets for retroviral integration varies markedly, tracking with the genus of the retrovirus, suggestive of targeting by binding to cellular factors. γ-Retroviral murine leukemia virus (MLV) DNA integration into the host genome is favored at transcription start sites, but the underlying mechanism for this preference is unknown. Here, we have identified bromodomain and extraterminal domain (BET) proteins (Brd2, -3, -4) as cellular-binding partners of MLV integrase. We show that purified recombinant Brd4(1-720) binds with high affinity to MLV integrase and stimulates correct concerted integration in vitro. JQ-1, a small molecule that selectively inhibits interactions of BET proteins with modified histone sites impaired MLV but not HIV-1 integration in infected cells. Comparison of the distribution of BET protein-binding sites analyzed using ChIP-Seq data and MLV-integration sites revealed significant positive correlations. Antagonism of BET proteins, via JQ-1 treatment or RNA interference, reduced MLV-integration frequencies at transcription start sites. These findings elucidate the importance of BET proteins for MLV integration efficiency and targeting and provide a route to developing safer MLV-based vectors for human gene therapy. (1-4). The selection of chromosomal targets for retroviral integration varies markedly, tracking with the genus of the retrovirus studied (5-7). For example, the γ-retroviruses favor integration near transcription start sites, whereas lentiviruses favor integration within transcription units. These observations have suggested that different cellularbinding partners of retroviral integrases are likely to be responsible for integration target-site selection. However, to date, only one example has been reported: lens epithelium-derived growth factor (LEDGF/p75), which functions as a bimodal tether that engages HIV-1 intasomes and navigates them to active genes (8-14). Cellular cofactors of other retroviral genera are currently unknown.The molecular mechanisms of γ-retroviral murine leukemia virus (MLV) integration are of particular significance because MLV-based vectors are used for human gene therapy. In clinical trials, the use of γ-retroviral vectors to correct primary immunodeficiencies has been curative, but adverse events have occurred associated with insertion of MLV-based vectors near protooncogenes (reviewed in refs. 15-18). The identification of cellular factors for γ-retroviruses may provide mechanistic clues to facilitate the development of safer gene-therapy vectors.In this report, we have identified the bromodomain and extraterminal domain (BET) proteins (Brd2, -3, -4) as the cellularbinding partners of MLV IN and demonstrate their significance for stimulating and targeting MLV integration at transcription start sites. (Table 1, Table S1, and Fig. S1). Of these, Brd4 and Brd3 were the top hits in NIH 3T3 and Sup-T1 cells, respectively. Differential pull-down levels of these proteins (Table 1) could be attributable to the varying expression le...