The influence of varying the manganese (Mn) contents of high-strength copper-containing hull steel on its microstructural evolution and mechanical properties was investigated. With increasing Mn content from 2 to 5%, the tensile strength of the steel increased by ~100 MPa, while the elongation of steel remained at ~23.5%, indicating good plasticity. However, the 2Mn sample had 128 J higher low-temperature (−84 °C) impact work than the 5Mn sample. The microstructures of different Mn steels were composed of fresh martensite (FM), ferrite/tempered martensite (F/TM), and reversed austenite (RA). The increase in Mn content markedly increased the presence of RA and intensified the work hardening caused by the transformation-induced plasticity (TRIP) effect during the tensile process. However, as the phase transformation in different Mn steels occurred in the early stage of strain and did not extend throughout the entire plastic deformation process, increasing plasticity via phase transformation was difficult. In addition, although the volume fraction of RA increased significantly in 4Mn and 5Mn steels, the stability of RA significantly decreased. The presence of numerous metastable blocks and coarse lath-like RA contributed little to low-temperature impact work and was even detrimental to toughness. The substantial fresh martensite resulting from phase transformation facilitated microcrack generation, owing to rapid volume expansion and mutual impacts, thus reducing the work required for crack formation. Additionally, the abundance of deformation twins significantly reduced the work needed for crack propagation. These combined actions significantly reduced the low-temperature toughness of 4Mn and 5Mn steels.