2010 10th IEEE International Conference on Solid Dielectrics 2010
DOI: 10.1109/icsd.2010.5568227
|View full text |Cite
|
Sign up to set email alerts
|

Temperature gradient effect on the conductivity of an XLPE insulated polymeric power cable

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 4 publications
0
3
0
1
Order By: Relevance
“…For P3a, for instance, we observe that σ DC is five‐fold higher at 90 °C compared to 70 °C (Figure S28, Supporting Information), an increase that is expected given the temperature‐dependence of charge conduction in high voltage insulation materials. [ 38,39 ]…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…For P3a, for instance, we observe that σ DC is five‐fold higher at 90 °C compared to 70 °C (Figure S28, Supporting Information), an increase that is expected given the temperature‐dependence of charge conduction in high voltage insulation materials. [ 38,39 ]…”
Section: Resultsmentioning
confidence: 99%
“…For P3a, for instance, we observe that 𝜎 DC is five-fold higher at 90 °C compared to 70 °C (Figure S28, Supporting Information), an increase that is expected given the temperature-dependence of charge conduction in high voltage insulation materials. [38,39] Evidently, the selection of a judicious amount of IPCs in combination with tuning of the polymerization conditions results in materials that display a promising combination of thermomechanical and dielectric properties. The ionomers P2a and P4a, for example, offer a desirable combination of a low 𝜎 DC < 2•10 −14 S m −1 but high 𝜅 = 0.39 W m −1 K −1 , while the tensile storage modulus at 150 °C ranges from E′ ≈ 0.8 to 1.4 MPa, slightly less than reference XLPE (Table 2).…”
Section: Resultsmentioning
confidence: 99%
“…In the actual operation of the cable, due to the high temperature of the inner conductor, XLPE is actually working in a continuous gradient temperature [8]. The temperature gradient will change the conductivity, the electric field, and the charge transport characteristics; therefore, it will also change the electrical treeing characteristics [9][10][11]. Unfortunately, the effect of radical scavenger on electrical treeing characteristics under temperature gradient is still not clear.…”
Section: Introductionmentioning
confidence: 99%
“…Key words: low-density polyethylene; nano-MMT; cooling methods; dielectric propeties 聚乙烯以其优异的电绝缘性能成为电气设备中 应用极广泛的塑料产品 [1] 。为了提高设备运行的可 靠性, 延长绝缘材料的使用寿命, 国内外相关学者 尝试用不同方法改进聚合物绝缘性能, 其中采用无 机纳米材料掺杂改善复合材料的电性能成为了人们 关注的热点。已有的研究工作表明, 无机纳米材料 的引入可以有效抑制聚乙烯绝缘中的电树枝和局部 放电 [2][3][4] , 使复合材料电老化性能得到改善; 无机纳 米材料还可改变聚合物体内陷阱能级的深度和密度, 从而影响复合材料的电导特性, 进而提高复合材料 的介电强度和抑制空间电荷积聚的能力 [5][6][7][8] 。然而, 由于纳米复合材料结构及界面的复杂性, 影响其结 构与性能的很多因素还有待进一步探讨。 聚乙烯电缆在制备过程中必须经过冷却工艺, 冷却工艺的不同将对纳米复合材料的结晶行为产生 一定影响 [9][10] , 其中结晶尺寸和结晶完整程度将影 响复合材料的电导特性 [11] 。另外, 空间电荷的产生、 运动和衰减不仅与外加电压有关 [12] , 与聚合物的结 晶状态也有着密切关系, 因此研究制备试样时冷却 方式对复合材料介电性能的影响具有一定的科学意 义。 本工作采用熔融插层法制备了经空气自然冷却、 空气快速冷却、水冷却和油冷却的蒙脱土/低密度聚 乙烯(MMT/LDPE)纳米复合材料, 对比研究了不同 冷却方式对复合材料电导特性、击穿性能和空间电 荷分布的影响。 (1) 式中, d 代表蒙脱土片层之间的平均距离; θ 为半衍 射角; λ 为入射 X 射线的波长, λ 取值 0.154 nm; n 为衍 射级数 [13] 。 根据公式(1)的计算结果可知, 经表面修 饰的纳米蒙脱土层间距从原来的 1.25 nm 增大到 2.39 nm 左右, 这表明 MMT 经表面修饰后片层间距 d 明显变大, 与 LDPE 基体的插层复合更为容易。从 纳米复合材料 MMT/LDPE 的 XRD 图谱中可知, 在 3°~10°范围内基本看不到明显的峰值, 这说明纳米 蒙脱土在低密度聚乙烯基体中已经剥离 [14] 。 2 FTIR patterns of MMT and MMT/LDPE specimens 之间形成了氢键, 氢键作用改变了基体材料的键力 常数, 使其振动幅度有所变化, 吸收峰峰值降低 [16] 。…”
unclassified