Electricity theft is a serious issue that many nations face, especially in developing areas where non-technical losses can make up a significant percentage of the overall losses sustained by utilities. Electricity theft detection (ETD) is a very challenging task because it frequently introduces irregularities in customer electricity consumption patterns. In recent times, machine learning (ML) techniques have been investigated as a potential solution for ETD. In this research, author propose electricity theft detection based on four kernel functions of support vector machines (SVM). The proposed method analyzes the electricity consumption patterns and then predicts the category of the user. The kernel functions utilized includes polynomial, sigmoid, radial basis function (RBF) and linear kernel function. For experimentation and model training, a dataset of Pakistani utility company is used, which contains the electricity consumption information. The results highlight SVM method works well for accurate ETD. The detection accuracy of the various kernel functions of SVM is 83%, 79%, 80%, and 76% for RBF, polynomial, sigmoid, and linear kernel functions, respectively, demonstrating the effectiveness of the proposed SVM-based method for theft detection. By leveraging these ML-based methods, utility companies can strengthen their ability to detect and prevent electricity theft, leading to improved revenue management and dependability of services.